or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

docs

core-data-structures.mdimage-processing.mdindex.mdio-operations.mdmathematical-operations.mdmesh-processing.mdregistration.mdsegmentation.mdspatial-objects.md
tile.json

tessl/cmake-itk

Medical image analysis toolkit providing algorithms for segmentation, registration, and processing of medical images

Workspace
tessl
Visibility
Public
Created
Last updated
Describes

pkg:github/insightsoftwareconsortium/itk@4.13.x

To install, run

npx @tessl/cli install tessl/cmake-itk@4.13.0

index.mddocs/

ITK (Insight Toolkit)

ITK is a comprehensive, open-source C++ toolkit for medical image analysis, providing advanced algorithms for image segmentation (identifying structures in medical images) and registration (aligning multiple image datasets). Built with a modular architecture, ITK supports cross-platform development and extensive customization for medical imaging research and clinical applications.

Package Information

  • Package Name: ITK (Insight Toolkit)
  • Package Type: C++ Library
  • Language: C++
  • Build System: CMake
  • Installation: Build from source using CMake, or use system package managers
  • Version: 4.13.2

Core Imports

ITK uses a namespace-based approach with templated classes:

#include "itkImage.h"
#include "itkImageFileReader.h" 
#include "itkImageFileWriter.h"

// Using ITK namespace
using namespace itk;

// Typical type definitions
typedef short                             PixelType;
const unsigned int                        Dimension = 3;
typedef itk::Image<PixelType, Dimension>  ImageType;

Basic Usage

#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

int main()
{
    // Define image types
    typedef short                             PixelType;
    const unsigned int                        Dimension = 3;
    typedef itk::Image<PixelType, Dimension>  ImageType;
    
    // Create reader and writer
    typedef itk::ImageFileReader<ImageType>   ReaderType;
    typedef itk::ImageFileWriter<ImageType>   WriterType;
    
    ReaderType::Pointer reader = ReaderType::New();
    WriterType::Pointer writer = WriterType::New();
    
    // Configure pipeline
    reader->SetFileName("input.nii");
    writer->SetFileName("output.nii");
    writer->SetInput(reader->GetOutput());
    
    // Execute pipeline
    try {
        writer->Update();
    } catch (itk::ExceptionObject & error) {
        std::cerr << "Error: " << error << std::endl;
        return EXIT_FAILURE;
    }
    
    return EXIT_SUCCESS;
}

Architecture

ITK follows a pipeline-based architecture with the following key design patterns:

  • Smart Pointer Management: All objects use reference-counted smart pointers (Pointer and ConstPointer)
  • Template-Based Design: Extensive use of C++ templates for type safety and performance
  • Pipeline Architecture: Data flows through connected processing objects with lazy evaluation
  • Modular Structure: Organized into specialized modules for different imaging tasks
  • Observer Pattern: Event-driven notifications for progress and status updates

Capabilities

Core Data Structures

ITK provides fundamental data structures for medical image analysis.

// N-dimensional templated image
template<typename TPixel, unsigned int VDimension>
class Image : public ImageBase<VDimension>;

// Image region specification  
template<unsigned int VDimension>
struct ImageRegion;

// N-dimensional point
template<typename T, unsigned int VDimension>
class Point;

// N-dimensional vector
template<typename T, unsigned int VDimension>
class Vector;

Core Data Structures

Input/Output Operations

Comprehensive support for reading and writing medical and standard image formats.

// Generic image file reader
template<typename TOutputImage>
class ImageFileReader : public ImageSource<TOutputImage>;

// Generic image file writer  
template<typename TInputImage>
class ImageFileWriter : public ProcessObject;

// Base class for format-specific IO
class ImageIOBase;

Input/Output Operations

Image Processing Filters

Extensive collection of image processing and analysis filters.

// Base class for image-to-image filters
template<typename TInputImage, typename TOutputImage>
class ImageToImageFilter : public ImageSource<TOutputImage>;

// Gaussian smoothing filter
template<typename TInputImage, typename TOutputImage>
class SmoothingRecursiveGaussianImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>;

// Threshold segmentation filter
template<typename TInputImage, typename TOutputImage>
class BinaryThresholdImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>;

Image Processing Filters

Registration Framework

Algorithms for aligning and registering multiple image datasets.

// Main registration method class
template<typename TFixedImage, typename TMovingImage>
class ImageRegistrationMethod : public ProcessObject;

// Base class for similarity metrics
template<typename TFixedImage, typename TMovingImage>
class ImageToImageMetric : public SingleValuedCostFunction;

// Base class for geometric transformations
template<typename TScalarType, unsigned int NDimensions>
class Transform : public TransformBase;

Registration Framework

Segmentation Algorithms

Advanced algorithms for identifying and classifying structures in medical images.

// Connected component segmentation
template<typename TInputImage, typename TOutputImage>
class ConnectedThresholdImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>;

// Level set segmentation base
template<typename TInputImage, typename TFeatureImage, typename TOutputPixelType>
class SegmentationLevelSetImageFilter : public SparseFieldLevelSetImageFilter<TInputImage, TOutputPixelType>;

// Fast marching method
template<typename TLevelSet, typename TSpeedImage>
class FastMarchingImageFilter : public ImageToImageFilter<TSpeedImage, TLevelSet>;

Segmentation Algorithms

Mesh Processing

Support for mesh data structures and geometric processing.

// General mesh structure
template<typename TPixelType, unsigned int VDimension>
class Mesh : public PointSet<TPixelType, VDimension>;

// Advanced mesh topology
template<typename TPixel, unsigned int VDimension>
class QuadEdgeMesh : public Mesh<TPixel, VDimension>;

// Point cloud representation
template<typename TPixelType, unsigned int VDimension>  
class PointSet : public DataObject;

Mesh Processing

Spatial Objects

Geometric primitives and spatial object representations.

// Base spatial object class
template<unsigned int TDimension>
class SpatialObject : public DataObject;

// Elliptical spatial objects
template<unsigned int TDimension>
class EllipseSpatialObject : public SpatialObject<TDimension>;

// Tubular structures
template<unsigned int TDimension>
class TubeSpatialObject : public SpatialObject<TDimension>;

Spatial Objects

Mathematical Operations

Numerical algorithms, optimization, and statistical operations.

// Base optimizer class
class Optimizer : public Object;

// Gradient descent optimization
class GradientDescentOptimizer : public SingleValuedNonLinearOptimizer;

// Statistical sample interface
template<typename TMeasurementVector>
class Sample : public DataObject;

Mathematical Operations

Common Types

// Smart pointer types
template<typename T>
class SmartPointer;

template<typename T>  
class WeakPointer;

// Base object types
class LightObject;
class Object : public LightObject;
class DataObject : public Object;
class ProcessObject : public Object;

// Numeric traits
template<typename T>
struct NumericTraits;

// Exception handling
class ExceptionObject;
class ProcessAborted : public ExceptionObject;

// Time and modification tracking
typedef unsigned long ModifiedTimeType;
class TimeStamp;

// Event system
class EventObject;
class Command;

ITK's extensive API surface includes hundreds of specialized classes for medical image analysis. Each capability area provides both high-level convenience classes and fine-grained control over processing parameters, making it suitable for both rapid prototyping and production medical imaging applications.