Medical image analysis toolkit providing algorithms for segmentation, registration, and processing of medical images
pkg:github/insightsoftwareconsortium/itk@4.13.x
npx @tessl/cli install tessl/cmake-itk@4.13.0ITK is a comprehensive, open-source C++ toolkit for medical image analysis, providing advanced algorithms for image segmentation (identifying structures in medical images) and registration (aligning multiple image datasets). Built with a modular architecture, ITK supports cross-platform development and extensive customization for medical imaging research and clinical applications.
ITK uses a namespace-based approach with templated classes:
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
// Using ITK namespace
using namespace itk;
// Typical type definitions
typedef short PixelType;
const unsigned int Dimension = 3;
typedef itk::Image<PixelType, Dimension> ImageType;#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
int main()
{
// Define image types
typedef short PixelType;
const unsigned int Dimension = 3;
typedef itk::Image<PixelType, Dimension> ImageType;
// Create reader and writer
typedef itk::ImageFileReader<ImageType> ReaderType;
typedef itk::ImageFileWriter<ImageType> WriterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
// Configure pipeline
reader->SetFileName("input.nii");
writer->SetFileName("output.nii");
writer->SetInput(reader->GetOutput());
// Execute pipeline
try {
writer->Update();
} catch (itk::ExceptionObject & error) {
std::cerr << "Error: " << error << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}ITK follows a pipeline-based architecture with the following key design patterns:
Pointer and ConstPointer)ITK provides fundamental data structures for medical image analysis.
// N-dimensional templated image
template<typename TPixel, unsigned int VDimension>
class Image : public ImageBase<VDimension>;
// Image region specification
template<unsigned int VDimension>
struct ImageRegion;
// N-dimensional point
template<typename T, unsigned int VDimension>
class Point;
// N-dimensional vector
template<typename T, unsigned int VDimension>
class Vector;Comprehensive support for reading and writing medical and standard image formats.
// Generic image file reader
template<typename TOutputImage>
class ImageFileReader : public ImageSource<TOutputImage>;
// Generic image file writer
template<typename TInputImage>
class ImageFileWriter : public ProcessObject;
// Base class for format-specific IO
class ImageIOBase;Extensive collection of image processing and analysis filters.
// Base class for image-to-image filters
template<typename TInputImage, typename TOutputImage>
class ImageToImageFilter : public ImageSource<TOutputImage>;
// Gaussian smoothing filter
template<typename TInputImage, typename TOutputImage>
class SmoothingRecursiveGaussianImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>;
// Threshold segmentation filter
template<typename TInputImage, typename TOutputImage>
class BinaryThresholdImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>;Algorithms for aligning and registering multiple image datasets.
// Main registration method class
template<typename TFixedImage, typename TMovingImage>
class ImageRegistrationMethod : public ProcessObject;
// Base class for similarity metrics
template<typename TFixedImage, typename TMovingImage>
class ImageToImageMetric : public SingleValuedCostFunction;
// Base class for geometric transformations
template<typename TScalarType, unsigned int NDimensions>
class Transform : public TransformBase;Advanced algorithms for identifying and classifying structures in medical images.
// Connected component segmentation
template<typename TInputImage, typename TOutputImage>
class ConnectedThresholdImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>;
// Level set segmentation base
template<typename TInputImage, typename TFeatureImage, typename TOutputPixelType>
class SegmentationLevelSetImageFilter : public SparseFieldLevelSetImageFilter<TInputImage, TOutputPixelType>;
// Fast marching method
template<typename TLevelSet, typename TSpeedImage>
class FastMarchingImageFilter : public ImageToImageFilter<TSpeedImage, TLevelSet>;Support for mesh data structures and geometric processing.
// General mesh structure
template<typename TPixelType, unsigned int VDimension>
class Mesh : public PointSet<TPixelType, VDimension>;
// Advanced mesh topology
template<typename TPixel, unsigned int VDimension>
class QuadEdgeMesh : public Mesh<TPixel, VDimension>;
// Point cloud representation
template<typename TPixelType, unsigned int VDimension>
class PointSet : public DataObject;Geometric primitives and spatial object representations.
// Base spatial object class
template<unsigned int TDimension>
class SpatialObject : public DataObject;
// Elliptical spatial objects
template<unsigned int TDimension>
class EllipseSpatialObject : public SpatialObject<TDimension>;
// Tubular structures
template<unsigned int TDimension>
class TubeSpatialObject : public SpatialObject<TDimension>;Numerical algorithms, optimization, and statistical operations.
// Base optimizer class
class Optimizer : public Object;
// Gradient descent optimization
class GradientDescentOptimizer : public SingleValuedNonLinearOptimizer;
// Statistical sample interface
template<typename TMeasurementVector>
class Sample : public DataObject;// Smart pointer types
template<typename T>
class SmartPointer;
template<typename T>
class WeakPointer;
// Base object types
class LightObject;
class Object : public LightObject;
class DataObject : public Object;
class ProcessObject : public Object;
// Numeric traits
template<typename T>
struct NumericTraits;
// Exception handling
class ExceptionObject;
class ProcessAborted : public ExceptionObject;
// Time and modification tracking
typedef unsigned long ModifiedTimeType;
class TimeStamp;
// Event system
class EventObject;
class Command;ITK's extensive API surface includes hundreds of specialized classes for medical image analysis. Each capability area provides both high-level convenience classes and fine-grained control over processing parameters, making it suitable for both rapid prototyping and production medical imaging applications.