0
# Chat Models
1
2
Advanced conversational AI capabilities using AWS Bedrock's Converse API with comprehensive support for streaming, function calling, multimodal input, structured output, and advanced features like reasoning content and prompt caching.
3
4
## Capabilities
5
6
### ChatBedrockConverse Class
7
8
Primary chat model class for AWS Bedrock Converse API integration, extending LangChain's BaseChatModel with AWS-specific capabilities.
9
10
```typescript { .api }
11
/**
12
* AWS Bedrock Converse chat model integration with streaming and tool support
13
*/
14
class ChatBedrockConverse extends BaseChatModel<ChatBedrockConverseCallOptions, AIMessageChunk> {
15
constructor(fields?: ChatBedrockConverseInput);
16
17
/** Generate a single response from the model */
18
invoke(messages: BaseMessage[], options?: ChatBedrockConverseCallOptions): Promise<AIMessage>;
19
20
/** Stream response chunks for real-time output */
21
stream(messages: BaseMessage[], options?: ChatBedrockConverseCallOptions): AsyncGenerator<AIMessageChunk>;
22
23
/** Bind tools for function calling capabilities */
24
bindTools(tools: ChatBedrockConverseToolType[], kwargs?: Partial<ChatBedrockConverseCallOptions>): Runnable<BaseLanguageModelInput, AIMessageChunk, ChatBedrockConverseCallOptions>;
25
26
/** Force structured JSON output using schema validation */
27
withStructuredOutput<T>(outputSchema: InteropZodType<T> | Record<string, any>, config?: StructuredOutputMethodOptions<boolean>): Runnable<BaseLanguageModelInput, T> | Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: T }>;
28
29
/** Get LangSmith parameters for tracing */
30
getLsParams(options: ChatBedrockConverseCallOptions): LangSmithParams;
31
32
/** Get invocation parameters for Bedrock API */
33
invocationParams(options?: ChatBedrockConverseCallOptions): Partial<ConverseCommandParams>;
34
}
35
```
36
37
**Usage Examples:**
38
39
```typescript
40
import { ChatBedrockConverse } from "@langchain/aws";
41
import { HumanMessage } from "@langchain/core/messages";
42
43
// Basic initialization
44
const model = new ChatBedrockConverse({
45
region: "us-east-1",
46
model: "anthropic.claude-3-5-sonnet-20240620-v1:0",
47
temperature: 0.7,
48
maxTokens: 1000,
49
credentials: {
50
accessKeyId: process.env.AWS_ACCESS_KEY_ID,
51
secretAccessKey: process.env.AWS_SECRET_ACCESS_KEY
52
}
53
});
54
55
// Simple conversation
56
const response = await model.invoke([
57
new HumanMessage("Explain quantum computing in simple terms")
58
]);
59
60
// Streaming conversation
61
const stream = await model.stream([
62
new HumanMessage("Write a short story about a robot")
63
]);
64
65
for await (const chunk of stream) {
66
process.stdout.write(chunk.content);
67
}
68
```
69
70
### Constructor Configuration
71
72
Comprehensive configuration options for initializing ChatBedrockConverse instances.
73
74
```typescript { .api }
75
interface ChatBedrockConverseInput extends BaseChatModelParams, Partial<DefaultProviderInit> {
76
/** Custom BedrockRuntimeClient instance */
77
client?: BedrockRuntimeClient;
78
79
/** Configuration options for BedrockRuntimeClient */
80
clientOptions?: BedrockRuntimeClientConfig;
81
82
/** Enable streaming responses by default */
83
streaming?: boolean;
84
85
/** Model ID to use (default: "anthropic.claude-3-haiku-20240307-v1:0") */
86
model?: string;
87
88
/** AWS region for API calls */
89
region?: string;
90
91
/** AWS credentials for authentication */
92
credentials?: CredentialType;
93
94
/** Temperature for response randomness (0.0-1.0) */
95
temperature?: number;
96
97
/** Maximum tokens to generate */
98
maxTokens?: number;
99
100
/** Custom endpoint hostname override */
101
endpointHost?: string;
102
103
/** Top-p sampling parameter (0.0-1.0) */
104
topP?: number;
105
106
/** Additional model-specific request fields */
107
additionalModelRequestFields?: __DocumentType;
108
109
/** Include usage metadata in streaming responses */
110
streamUsage?: boolean;
111
112
/** Guardrail configuration for content filtering */
113
guardrailConfig?: GuardrailConfiguration;
114
115
/** Performance configuration for latency optimization */
116
performanceConfig?: PerformanceConfiguration;
117
118
/** Supported tool choice values for this model */
119
supportsToolChoiceValues?: Array<"auto" | "any" | "tool">;
120
}
121
```
122
123
### Call Options
124
125
Runtime options that can be passed to model methods for per-request customization.
126
127
```typescript { .api }
128
interface ChatBedrockConverseCallOptions extends BaseChatModelCallOptions {
129
/** Stop sequences to halt generation */
130
stop?: string[];
131
132
/** Tools available for function calling */
133
tools?: ChatBedrockConverseToolType[];
134
135
/** Tool choice strategy ("auto", "any", tool name, or BedrockToolChoice object) */
136
tool_choice?: BedrockConverseToolChoice;
137
138
/** Additional model-specific fields for this request */
139
additionalModelRequestFields?: __DocumentType;
140
141
/** Include usage metadata in streaming for this request */
142
streamUsage?: boolean;
143
144
/** Guardrail configuration for this request */
145
guardrailConfig?: GuardrailConfiguration;
146
147
/** Performance configuration for this request */
148
performanceConfig?: PerformanceConfiguration;
149
}
150
```
151
152
### Function Calling
153
154
Comprehensive tool binding and function calling capabilities with intelligent tool choice selection.
155
156
```typescript { .api }
157
type ChatBedrockConverseToolType = BindToolsInput | BedrockTool;
158
159
type BedrockConverseToolChoice = "auto" | "any" | string | BedrockToolChoice;
160
161
type BedrockToolChoice = ToolChoice.AnyMember | ToolChoice.AutoMember | ToolChoice.ToolMember;
162
```
163
164
**Usage Examples:**
165
166
```typescript
167
import { z } from "zod";
168
169
// Define tools with Zod schemas
170
const weatherTool = {
171
name: "get_weather",
172
description: "Get current weather information",
173
schema: z.object({
174
location: z.string().describe("City and state, e.g. San Francisco, CA"),
175
unit: z.enum(["celsius", "fahrenheit"]).optional()
176
})
177
};
178
179
const calculatorTool = {
180
name: "calculate",
181
description: "Perform mathematical calculations",
182
schema: z.object({
183
expression: z.string().describe("Mathematical expression to evaluate")
184
})
185
};
186
187
// Bind tools with automatic tool choice
188
const modelWithTools = model.bindTools([weatherTool, calculatorTool], {
189
tool_choice: "auto" // Let model decide when to use tools
190
});
191
192
// Force tool usage
193
const modelForceWeather = model.bindTools([weatherTool], {
194
tool_choice: "get_weather" // Always use weather tool
195
});
196
197
// Require any tool
198
const modelRequireTool = model.bindTools([weatherTool, calculatorTool], {
199
tool_choice: "any" // Must use at least one tool
200
});
201
202
const result = await modelWithTools.invoke([
203
new HumanMessage("What's the weather in Paris and what's 2 + 2?")
204
]);
205
206
// Access tool calls from response
207
if (result.tool_calls && result.tool_calls.length > 0) {
208
result.tool_calls.forEach(call => {
209
console.log(`Tool: ${call.name}, Args:`, call.args);
210
});
211
}
212
```
213
214
### Structured Output
215
216
Force models to return structured JSON data using schema validation.
217
218
**Usage Examples:**
219
220
```typescript
221
import { z } from "zod";
222
223
// Define response structure
224
const JokeSchema = z.object({
225
setup: z.string().describe("The setup of the joke"),
226
punchline: z.string().describe("The punchline"),
227
rating: z.number().min(1).max(10).optional().describe("Humor rating 1-10")
228
});
229
230
// Create structured output model
231
const structuredModel = model.withStructuredOutput(JokeSchema, {
232
name: "generate_joke"
233
});
234
235
// Get structured response
236
const joke = await structuredModel.invoke([
237
new HumanMessage("Tell me a joke about programming")
238
]);
239
240
console.log(joke); // { setup: "Why do programmers...", punchline: "...", rating: 8 }
241
242
// With raw response included
243
const modelWithRaw = model.withStructuredOutput(JokeSchema, {
244
name: "generate_joke",
245
includeRaw: true
246
});
247
248
const result = await modelWithRaw.invoke([
249
new HumanMessage("Tell me a joke about cats")
250
]);
251
252
console.log(result.parsed); // Structured joke object
253
console.log(result.raw); // Original AIMessage
254
```
255
256
### Multimodal Input
257
258
Support for text, images, and documents in conversations.
259
260
**Usage Examples:**
261
262
```typescript
263
import { HumanMessage } from "@langchain/core/messages";
264
265
// Image analysis
266
const imageMessage = new HumanMessage({
267
content: [
268
{ type: "text", text: "Describe what you see in this image" },
269
{
270
type: "image_url",
271
image_url: {
272
url: "..."
273
}
274
}
275
]
276
});
277
278
const imageResponse = await model.invoke([imageMessage]);
279
280
// Document analysis
281
const documentMessage = new HumanMessage({
282
content: [
283
{ type: "text", text: "Summarize this document" },
284
{
285
type: "document",
286
document: {
287
format: "pdf",
288
name: "report.pdf",
289
source: {
290
bytes: pdfBuffer
291
}
292
}
293
}
294
]
295
});
296
297
const docResponse = await model.invoke([documentMessage]);
298
```
299
300
### Advanced Features
301
302
#### Reasoning Content Support
303
304
Claude models can produce reasoning blocks showing their thought process.
305
306
```typescript
307
// Reasoning content is automatically handled in streaming
308
const stream = await model.stream([
309
new HumanMessage("Solve this step by step: What is 15% of 240?")
310
]);
311
312
for await (const chunk of stream) {
313
// Reasoning content appears in response_metadata
314
if (chunk.response_metadata?.reasoning) {
315
console.log("Reasoning:", chunk.response_metadata.reasoning);
316
}
317
console.log("Content:", chunk.content);
318
}
319
```
320
321
#### Prompt Caching
322
323
Optimize costs and latency by caching frequently used prompts.
324
325
```typescript
326
import { SystemMessage } from "@langchain/core/messages";
327
328
const systemMessage = new SystemMessage({
329
content: [
330
{ type: "text", text: "You are a helpful coding assistant with expertise in Python and JavaScript." },
331
{ cachePoint: { type: "default" } }, // Cache point marker
332
{ type: "text", text: "Always provide working code examples and explain your reasoning." }
333
]
334
});
335
336
const response = await model.invoke([
337
systemMessage,
338
new HumanMessage("How do I implement a binary search in Python?")
339
]);
340
```
341
342
#### Guardrails Integration
343
344
Built-in support for AWS Bedrock Guardrails for content filtering.
345
346
```typescript
347
const guardedModel = new ChatBedrockConverse({
348
region: "us-east-1",
349
model: "anthropic.claude-3-5-sonnet-20240620-v1:0",
350
guardrailConfig: {
351
guardrailIdentifier: "your-guardrail-id",
352
guardrailVersion: "1",
353
trace: "enabled"
354
}
355
});
356
357
// Guardrails are automatically applied to requests and responses
358
const response = await guardedModel.invoke([
359
new HumanMessage("Your message here")
360
]);
361
```
362
363
#### Performance Configuration
364
365
Optimize for reduced latency using performance settings.
366
367
```typescript
368
const optimizedModel = new ChatBedrockConverse({
369
region: "us-east-1",
370
model: "anthropic.claude-3-5-sonnet-20240620-v1:0",
371
performanceConfig: {
372
latency: "optimized" // or "standard"
373
}
374
});
375
```