or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

authentication.mdchat-models.mdembeddings.mdindex.mdretrievers.md

chat-models.mddocs/

0

# Chat Models

1

2

Advanced conversational AI capabilities using AWS Bedrock's Converse API with comprehensive support for streaming, function calling, multimodal input, structured output, and advanced features like reasoning content and prompt caching.

3

4

## Capabilities

5

6

### ChatBedrockConverse Class

7

8

Primary chat model class for AWS Bedrock Converse API integration, extending LangChain's BaseChatModel with AWS-specific capabilities.

9

10

```typescript { .api }

11

/**

12

* AWS Bedrock Converse chat model integration with streaming and tool support

13

*/

14

class ChatBedrockConverse extends BaseChatModel<ChatBedrockConverseCallOptions, AIMessageChunk> {

15

constructor(fields?: ChatBedrockConverseInput);

16

17

/** Generate a single response from the model */

18

invoke(messages: BaseMessage[], options?: ChatBedrockConverseCallOptions): Promise<AIMessage>;

19

20

/** Stream response chunks for real-time output */

21

stream(messages: BaseMessage[], options?: ChatBedrockConverseCallOptions): AsyncGenerator<AIMessageChunk>;

22

23

/** Bind tools for function calling capabilities */

24

bindTools(tools: ChatBedrockConverseToolType[], kwargs?: Partial<ChatBedrockConverseCallOptions>): Runnable<BaseLanguageModelInput, AIMessageChunk, ChatBedrockConverseCallOptions>;

25

26

/** Force structured JSON output using schema validation */

27

withStructuredOutput<T>(outputSchema: InteropZodType<T> | Record<string, any>, config?: StructuredOutputMethodOptions<boolean>): Runnable<BaseLanguageModelInput, T> | Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: T }>;

28

29

/** Get LangSmith parameters for tracing */

30

getLsParams(options: ChatBedrockConverseCallOptions): LangSmithParams;

31

32

/** Get invocation parameters for Bedrock API */

33

invocationParams(options?: ChatBedrockConverseCallOptions): Partial<ConverseCommandParams>;

34

}

35

```

36

37

**Usage Examples:**

38

39

```typescript

40

import { ChatBedrockConverse } from "@langchain/aws";

41

import { HumanMessage } from "@langchain/core/messages";

42

43

// Basic initialization

44

const model = new ChatBedrockConverse({

45

region: "us-east-1",

46

model: "anthropic.claude-3-5-sonnet-20240620-v1:0",

47

temperature: 0.7,

48

maxTokens: 1000,

49

credentials: {

50

accessKeyId: process.env.AWS_ACCESS_KEY_ID,

51

secretAccessKey: process.env.AWS_SECRET_ACCESS_KEY

52

}

53

});

54

55

// Simple conversation

56

const response = await model.invoke([

57

new HumanMessage("Explain quantum computing in simple terms")

58

]);

59

60

// Streaming conversation

61

const stream = await model.stream([

62

new HumanMessage("Write a short story about a robot")

63

]);

64

65

for await (const chunk of stream) {

66

process.stdout.write(chunk.content);

67

}

68

```

69

70

### Constructor Configuration

71

72

Comprehensive configuration options for initializing ChatBedrockConverse instances.

73

74

```typescript { .api }

75

interface ChatBedrockConverseInput extends BaseChatModelParams, Partial<DefaultProviderInit> {

76

/** Custom BedrockRuntimeClient instance */

77

client?: BedrockRuntimeClient;

78

79

/** Configuration options for BedrockRuntimeClient */

80

clientOptions?: BedrockRuntimeClientConfig;

81

82

/** Enable streaming responses by default */

83

streaming?: boolean;

84

85

/** Model ID to use (default: "anthropic.claude-3-haiku-20240307-v1:0") */

86

model?: string;

87

88

/** AWS region for API calls */

89

region?: string;

90

91

/** AWS credentials for authentication */

92

credentials?: CredentialType;

93

94

/** Temperature for response randomness (0.0-1.0) */

95

temperature?: number;

96

97

/** Maximum tokens to generate */

98

maxTokens?: number;

99

100

/** Custom endpoint hostname override */

101

endpointHost?: string;

102

103

/** Top-p sampling parameter (0.0-1.0) */

104

topP?: number;

105

106

/** Additional model-specific request fields */

107

additionalModelRequestFields?: __DocumentType;

108

109

/** Include usage metadata in streaming responses */

110

streamUsage?: boolean;

111

112

/** Guardrail configuration for content filtering */

113

guardrailConfig?: GuardrailConfiguration;

114

115

/** Performance configuration for latency optimization */

116

performanceConfig?: PerformanceConfiguration;

117

118

/** Supported tool choice values for this model */

119

supportsToolChoiceValues?: Array<"auto" | "any" | "tool">;

120

}

121

```

122

123

### Call Options

124

125

Runtime options that can be passed to model methods for per-request customization.

126

127

```typescript { .api }

128

interface ChatBedrockConverseCallOptions extends BaseChatModelCallOptions {

129

/** Stop sequences to halt generation */

130

stop?: string[];

131

132

/** Tools available for function calling */

133

tools?: ChatBedrockConverseToolType[];

134

135

/** Tool choice strategy ("auto", "any", tool name, or BedrockToolChoice object) */

136

tool_choice?: BedrockConverseToolChoice;

137

138

/** Additional model-specific fields for this request */

139

additionalModelRequestFields?: __DocumentType;

140

141

/** Include usage metadata in streaming for this request */

142

streamUsage?: boolean;

143

144

/** Guardrail configuration for this request */

145

guardrailConfig?: GuardrailConfiguration;

146

147

/** Performance configuration for this request */

148

performanceConfig?: PerformanceConfiguration;

149

}

150

```

151

152

### Function Calling

153

154

Comprehensive tool binding and function calling capabilities with intelligent tool choice selection.

155

156

```typescript { .api }

157

type ChatBedrockConverseToolType = BindToolsInput | BedrockTool;

158

159

type BedrockConverseToolChoice = "auto" | "any" | string | BedrockToolChoice;

160

161

type BedrockToolChoice = ToolChoice.AnyMember | ToolChoice.AutoMember | ToolChoice.ToolMember;

162

```

163

164

**Usage Examples:**

165

166

```typescript

167

import { z } from "zod";

168

169

// Define tools with Zod schemas

170

const weatherTool = {

171

name: "get_weather",

172

description: "Get current weather information",

173

schema: z.object({

174

location: z.string().describe("City and state, e.g. San Francisco, CA"),

175

unit: z.enum(["celsius", "fahrenheit"]).optional()

176

})

177

};

178

179

const calculatorTool = {

180

name: "calculate",

181

description: "Perform mathematical calculations",

182

schema: z.object({

183

expression: z.string().describe("Mathematical expression to evaluate")

184

})

185

};

186

187

// Bind tools with automatic tool choice

188

const modelWithTools = model.bindTools([weatherTool, calculatorTool], {

189

tool_choice: "auto" // Let model decide when to use tools

190

});

191

192

// Force tool usage

193

const modelForceWeather = model.bindTools([weatherTool], {

194

tool_choice: "get_weather" // Always use weather tool

195

});

196

197

// Require any tool

198

const modelRequireTool = model.bindTools([weatherTool, calculatorTool], {

199

tool_choice: "any" // Must use at least one tool

200

});

201

202

const result = await modelWithTools.invoke([

203

new HumanMessage("What's the weather in Paris and what's 2 + 2?")

204

]);

205

206

// Access tool calls from response

207

if (result.tool_calls && result.tool_calls.length > 0) {

208

result.tool_calls.forEach(call => {

209

console.log(`Tool: ${call.name}, Args:`, call.args);

210

});

211

}

212

```

213

214

### Structured Output

215

216

Force models to return structured JSON data using schema validation.

217

218

**Usage Examples:**

219

220

```typescript

221

import { z } from "zod";

222

223

// Define response structure

224

const JokeSchema = z.object({

225

setup: z.string().describe("The setup of the joke"),

226

punchline: z.string().describe("The punchline"),

227

rating: z.number().min(1).max(10).optional().describe("Humor rating 1-10")

228

});

229

230

// Create structured output model

231

const structuredModel = model.withStructuredOutput(JokeSchema, {

232

name: "generate_joke"

233

});

234

235

// Get structured response

236

const joke = await structuredModel.invoke([

237

new HumanMessage("Tell me a joke about programming")

238

]);

239

240

console.log(joke); // { setup: "Why do programmers...", punchline: "...", rating: 8 }

241

242

// With raw response included

243

const modelWithRaw = model.withStructuredOutput(JokeSchema, {

244

name: "generate_joke",

245

includeRaw: true

246

});

247

248

const result = await modelWithRaw.invoke([

249

new HumanMessage("Tell me a joke about cats")

250

]);

251

252

console.log(result.parsed); // Structured joke object

253

console.log(result.raw); // Original AIMessage

254

```

255

256

### Multimodal Input

257

258

Support for text, images, and documents in conversations.

259

260

**Usage Examples:**

261

262

```typescript

263

import { HumanMessage } from "@langchain/core/messages";

264

265

// Image analysis

266

const imageMessage = new HumanMessage({

267

content: [

268

{ type: "text", text: "Describe what you see in this image" },

269

{

270

type: "image_url",

271

image_url: {

272

url: "..."

273

}

274

}

275

]

276

});

277

278

const imageResponse = await model.invoke([imageMessage]);

279

280

// Document analysis

281

const documentMessage = new HumanMessage({

282

content: [

283

{ type: "text", text: "Summarize this document" },

284

{

285

type: "document",

286

document: {

287

format: "pdf",

288

name: "report.pdf",

289

source: {

290

bytes: pdfBuffer

291

}

292

}

293

}

294

]

295

});

296

297

const docResponse = await model.invoke([documentMessage]);

298

```

299

300

### Advanced Features

301

302

#### Reasoning Content Support

303

304

Claude models can produce reasoning blocks showing their thought process.

305

306

```typescript

307

// Reasoning content is automatically handled in streaming

308

const stream = await model.stream([

309

new HumanMessage("Solve this step by step: What is 15% of 240?")

310

]);

311

312

for await (const chunk of stream) {

313

// Reasoning content appears in response_metadata

314

if (chunk.response_metadata?.reasoning) {

315

console.log("Reasoning:", chunk.response_metadata.reasoning);

316

}

317

console.log("Content:", chunk.content);

318

}

319

```

320

321

#### Prompt Caching

322

323

Optimize costs and latency by caching frequently used prompts.

324

325

```typescript

326

import { SystemMessage } from "@langchain/core/messages";

327

328

const systemMessage = new SystemMessage({

329

content: [

330

{ type: "text", text: "You are a helpful coding assistant with expertise in Python and JavaScript." },

331

{ cachePoint: { type: "default" } }, // Cache point marker

332

{ type: "text", text: "Always provide working code examples and explain your reasoning." }

333

]

334

});

335

336

const response = await model.invoke([

337

systemMessage,

338

new HumanMessage("How do I implement a binary search in Python?")

339

]);

340

```

341

342

#### Guardrails Integration

343

344

Built-in support for AWS Bedrock Guardrails for content filtering.

345

346

```typescript

347

const guardedModel = new ChatBedrockConverse({

348

region: "us-east-1",

349

model: "anthropic.claude-3-5-sonnet-20240620-v1:0",

350

guardrailConfig: {

351

guardrailIdentifier: "your-guardrail-id",

352

guardrailVersion: "1",

353

trace: "enabled"

354

}

355

});

356

357

// Guardrails are automatically applied to requests and responses

358

const response = await guardedModel.invoke([

359

new HumanMessage("Your message here")

360

]);

361

```

362

363

#### Performance Configuration

364

365

Optimize for reduced latency using performance settings.

366

367

```typescript

368

const optimizedModel = new ChatBedrockConverse({

369

region: "us-east-1",

370

model: "anthropic.claude-3-5-sonnet-20240620-v1:0",

371

performanceConfig: {

372

latency: "optimized" // or "standard"

373

}

374

});

375

```