or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

agents.mdchat-engines.mddocument-processing.mdembeddings.mdindex.mdllm-integration.mdquery-engines.mdresponse-synthesis.mdsettings.mdstorage.mdtools.mdvector-indexing.md
tile.json

embeddings.mddocs/

0

# Embeddings

1

2

Text embedding generation and similarity operations for semantic search and retrieval in LlamaIndex.TS.

3

4

## Import

5

6

```typescript

7

import { OpenAIEmbedding, Settings } from "llamaindex";

8

```

9

10

## Overview

11

12

Embeddings convert text into numerical vector representations that capture semantic meaning, enabling similarity search and retrieval operations in LlamaIndex.TS.

13

14

## Base Embedding Interface

15

16

```typescript { .api }

17

interface BaseEmbedding {

18

getTextEmbedding(text: string): Promise<number[]>;

19

getQueryEmbedding(query: string): Promise<number[]>;

20

21

embedBatchSize?: number;

22

dimensions?: number;

23

}

24

```

25

26

## OpenAI Embeddings

27

28

```typescript { .api }

29

class OpenAIEmbedding implements BaseEmbedding {

30

constructor(options?: {

31

model?: string;

32

dimensions?: number;

33

apiKey?: string;

34

});

35

36

getTextEmbedding(text: string): Promise<number[]>;

37

getQueryEmbedding(query: string): Promise<number[]>;

38

}

39

```

40

41

## Basic Usage

42

43

```typescript

44

import { OpenAIEmbedding, Settings } from "llamaindex";

45

46

// Configure global embedding model

47

Settings.embedModel = new OpenAIEmbedding({

48

model: "text-embedding-3-large",

49

dimensions: 1536,

50

});

51

52

// Generate embeddings

53

const text = "LlamaIndex is a data framework";

54

const embedding = await Settings.embedModel.getTextEmbedding(text);

55

console.log("Embedding dimensions:", embedding.length);

56

```

57

58

## Similarity Functions

59

60

```typescript { .api }

61

function similarity(embedding1: number[], embedding2: number[]): number;

62

63

function getTopKEmbeddings(

64

queryEmbedding: number[],

65

embeddings: number[][],

66

k: number

67

): number[];

68

```

69

70

## Usage with Indices

71

72

```typescript

73

// Embeddings are automatically used by VectorStoreIndex

74

const index = await VectorStoreIndex.fromDocuments(documents);

75

// Uses Settings.embedModel to generate embeddings for documents

76

```