0
# Economic Indicators
1
2
AKShare provides comprehensive macroeconomic data with 226 functions covering economic indicators from China, United States, European Union, Japan, Australia, Canada, and the United Kingdom. This is the largest category in AKShare, reflecting the importance of macroeconomic analysis in financial markets.
3
4
## Chinese Economic Data (77+ functions)
5
6
### Core Economic Indicators
7
8
#### Consumer Price Index (CPI)
9
```python { .api }
10
import akshare as ak
11
12
def macro_china_cpi() -> pd.DataFrame:
13
"""
14
Chinese Consumer Price Index data from East Money
15
16
Returns:
17
pd.DataFrame: CPI data with columns:
18
- 时间 (Time): Date
19
- 全国-同比 (National YoY): National CPI year-over-year
20
- 全国-环比 (National MoM): National CPI month-over-month
21
- 城市-同比 (Urban YoY): Urban CPI year-over-year
22
- 农村-同比 (Rural YoY): Rural CPI year-over-year
23
"""
24
25
# Get national CPI data
26
cpi_df = ak.macro_china_cpi()
27
print(cpi_df.head())
28
# 时间 全国-同比 全国-环比 城市-同比 农村-同比
29
# 0 2024-11-01 102.3 100.2 102.1 102.8
30
# 1 2024-10-01 102.0 100.4 101.8 102.5
31
```
32
33
#### Gross Domestic Product (GDP)
34
```python { .api }
35
import akshare as ak
36
37
def macro_china_gdp() -> pd.DataFrame:
38
"""
39
Chinese GDP quarterly data
40
41
Returns:
42
pd.DataFrame: GDP data with columns:
43
- 季度 (Quarter): Quarter period
44
- 国内生产总值-绝对值 (GDP Absolute): Absolute GDP value
45
- 国内生产总值-同比增长 (GDP YoY): Year-over-year growth
46
- 第一产业-绝对值 (Primary Industry): Primary sector GDP
47
- 第二产业-绝对值 (Secondary Industry): Secondary sector GDP
48
- 第三产业-绝对值 (Tertiary Industry): Tertiary sector GDP
49
"""
50
51
# Get GDP data
52
gdp_df = ak.macro_china_gdp()
53
print(gdp_df.head())
54
# 季度 国内生产总值-绝对值 国内生产总值-同比增长 第一产业-绝对值 第二产业-绝对值 第三产业-绝对值
55
# 0 2024Q3 296298.4 4.6 80480.5 117647.2 98170.7
56
```
57
58
#### Purchasing Managers Index (PMI)
59
```python { .api }
60
import akshare as ak
61
62
def macro_china_pmi() -> pd.DataFrame:
63
"""
64
Chinese PMI (Manufacturing and Services)
65
66
Returns:
67
pd.DataFrame: PMI data with columns:
68
- 日期 (Date): Date
69
- 制造业PMI (Manufacturing PMI): Manufacturing PMI value
70
- 服务业PMI (Services PMI): Services PMI value
71
- 综合PMI (Composite PMI): Composite PMI value
72
"""
73
74
# Get PMI data
75
pmi_df = ak.macro_china_pmi()
76
print(pmi_df.head())
77
# 日期 制造业PMI 服务业PMI 综合PMI
78
# 0 2024-11-01 50.2 51.4 51.8
79
# 1 2024-10-01 49.8 50.2 50.5
80
```
81
82
#### Money Supply
83
```python { .api }
84
import akshare as ak
85
86
def macro_china_money_supply() -> pd.DataFrame:
87
"""
88
Chinese money supply data (M0, M1, M2)
89
90
Returns:
91
pd.DataFrame: Money supply data with columns:
92
- 月份 (Month): Month
93
- 货币和准货币(M2) (M2): Broad money supply
94
- 货币(M1) (M1): Narrow money supply
95
- 流通中现金(M0) (M0): Currency in circulation
96
- M2同比增长 (M2 YoY): M2 year-over-year growth
97
- M1同比增长 (M1 YoY): M1 year-over-year growth
98
- M0同比增长 (M0 YoY): M0 year-over-year growth
99
"""
100
101
# Get money supply data
102
money_df = ak.macro_china_money_supply()
103
```
104
105
#### Trade Statistics
106
```python { .api }
107
import akshare as ak
108
109
def macro_china_trade() -> pd.DataFrame:
110
"""
111
Chinese international trade data
112
113
Returns:
114
pd.DataFrame: Trade statistics with columns:
115
- 月份 (Month): Month
116
- 出口金额 (Exports): Export value in USD
117
- 进口金额 (Imports): Import value in USD
118
- 贸易差额 (Trade Balance): Trade balance
119
- 出口同比 (Export YoY): Export year-over-year growth
120
- 进口同比 (Import YoY): Import year-over-year growth
121
"""
122
123
# Get trade data
124
trade_df = ak.macro_china_trade()
125
```
126
127
### Industrial and Production Indicators
128
129
#### Industrial Production
130
```python { .api }
131
import akshare as ak
132
133
def macro_china_industrial_production() -> pd.DataFrame:
134
"""
135
Chinese industrial production index
136
137
Returns:
138
pd.DataFrame: Industrial production data
139
"""
140
141
# Get industrial production data
142
industrial_df = ak.macro_china_industrial_production()
143
```
144
145
#### Fixed Asset Investment
146
```python { .api }
147
import akshare as ak
148
149
def macro_china_fixed_asset_investment() -> pd.DataFrame:
150
"""
151
Chinese fixed asset investment data
152
153
Returns:
154
pd.DataFrame: Investment statistics by sector
155
"""
156
157
# Get investment data
158
investment_df = ak.macro_china_fixed_asset_investment()
159
```
160
161
### Financial and Monetary Indicators
162
163
#### Interest Rates
164
```python { .api }
165
import akshare as ak
166
167
def macro_china_interest_rate() -> pd.DataFrame:
168
"""
169
Chinese central bank interest rates
170
171
Returns:
172
pd.DataFrame: Interest rate data including:
173
- 存款基准利率 (Deposit Rate)
174
- 贷款基准利率 (Loan Rate)
175
- 公开市场操作利率 (OMO Rate)
176
"""
177
178
# Get interest rate data
179
rate_df = ak.macro_china_interest_rate()
180
```
181
182
#### Reserve Requirement Ratio
183
```python { .api }
184
import akshare as ak
185
186
def macro_china_rrr() -> pd.DataFrame:
187
"""
188
Chinese bank reserve requirement ratio
189
190
Returns:
191
pd.DataFrame: RRR adjustment history
192
"""
193
194
# Get RRR data
195
rrr_df = ak.macro_china_rrr()
196
```
197
198
## US Economic Data (49+ functions)
199
200
### Employment Indicators
201
202
#### Non-farm Payrolls
203
```python { .api }
204
import akshare as ak
205
206
def macro_usa_non_farm() -> pd.DataFrame:
207
"""
208
US Non-farm Payroll employment data
209
210
Returns:
211
pd.DataFrame: Employment data with columns:
212
- 日期 (Date): Release date
213
- 非农就业人口 (Non-farm Employment): Employment change
214
- 失业率 (Unemployment Rate): Unemployment rate
215
"""
216
217
# Get non-farm payroll data
218
nonfarm_df = ak.macro_usa_non_farm()
219
print(nonfarm_df.head())
220
# 日期 非农就业人口 失业率
221
# 0 2024-11-01 12000 4.1
222
# 1 2024-10-04 254000 4.0
223
```
224
225
#### Unemployment Rate
226
```python { .api }
227
import akshare as ak
228
229
def macro_usa_unemployment_rate() -> pd.DataFrame:
230
"""
231
US unemployment rate statistics
232
233
Returns:
234
pd.DataFrame: Unemployment data by demographics
235
"""
236
237
# Get detailed unemployment data
238
unemployment_df = ak.macro_usa_unemployment_rate()
239
```
240
241
### Economic Growth
242
243
#### GDP Data
244
```python { .api }
245
import akshare as ak
246
247
def macro_usa_gdp() -> pd.DataFrame:
248
"""
249
US GDP quarterly data
250
251
Returns:
252
pd.DataFrame: GDP data with columns:
253
- 日期 (Date): Quarter
254
- GDP环比折年率 (GDP QoQ Annualized): GDP growth rate
255
- GDP同比 (GDP YoY): GDP year-over-year
256
"""
257
258
# Get US GDP data
259
us_gdp_df = ak.macro_usa_gdp()
260
```
261
262
### Inflation Indicators
263
264
#### Consumer Price Index
265
```python { .api }
266
import akshare as ak
267
268
def macro_usa_cpi() -> pd.DataFrame:
269
"""
270
US Consumer Price Index
271
272
Returns:
273
pd.DataFrame: CPI data with core and headline measures
274
"""
275
276
# Get US CPI data
277
us_cpi_df = ak.macro_usa_cpi()
278
```
279
280
#### Producer Price Index
281
```python { .api }
282
import akshare as ak
283
284
def macro_usa_ppi() -> pd.DataFrame:
285
"""
286
US Producer Price Index
287
288
Returns:
289
pd.DataFrame: PPI data for producer inflation
290
"""
291
292
# Get US PPI data
293
us_ppi_df = ak.macro_usa_ppi()
294
```
295
296
### Manufacturing and Business
297
298
#### ISM Manufacturing PMI
299
```python { .api }
300
import akshare as ak
301
302
def macro_usa_ism_pmi() -> pd.DataFrame:
303
"""
304
US ISM Manufacturing PMI
305
306
Returns:
307
pd.DataFrame: Manufacturing PMI data
308
"""
309
310
# Get US manufacturing PMI
311
us_pmi_df = ak.macro_usa_ism_pmi()
312
```
313
314
#### Industrial Production
315
```python { .api }
316
import akshare as ak
317
318
def macro_usa_industrial_production() -> pd.DataFrame:
319
"""
320
US industrial production index
321
322
Returns:
323
pd.DataFrame: Industrial production data
324
"""
325
326
# Get US industrial production
327
us_industrial_df = ak.macro_usa_industrial_production()
328
```
329
330
## European Economic Data (16+ functions)
331
332
### Eurozone Indicators
333
334
#### European Central Bank Policy
335
```python { .api }
336
import akshare as ak
337
338
def macro_euro_interest_rate() -> pd.DataFrame:
339
"""
340
ECB interest rate decisions
341
342
Returns:
343
pd.DataFrame: ECB policy rate history
344
"""
345
346
# Get ECB rates
347
ecb_rates = ak.macro_euro_interest_rate()
348
```
349
350
#### Eurozone CPI
351
```python { .api }
352
import akshare as ak
353
354
def macro_euro_cpi() -> pd.DataFrame:
355
"""
356
Eurozone Consumer Price Index
357
358
Returns:
359
pd.DataFrame: Eurozone inflation data
360
"""
361
362
# Get Eurozone CPI
363
euro_cpi = ak.macro_euro_cpi()
364
```
365
366
#### Eurozone GDP
367
```python { .api }
368
import akshare as ak
369
370
def macro_euro_gdp() -> pd.DataFrame:
371
"""
372
Eurozone GDP quarterly data
373
374
Returns:
375
pd.DataFrame: Eurozone economic growth
376
"""
377
378
# Get Eurozone GDP
379
euro_gdp = ak.macro_euro_gdp()
380
```
381
382
## Other Major Economies
383
384
### Japan Economic Data
385
```python { .api }
386
import akshare as ak
387
388
def macro_japan_cpi() -> pd.DataFrame:
389
"""Japanese Consumer Price Index"""
390
391
def macro_japan_gdp() -> pd.DataFrame:
392
"""Japanese GDP data"""
393
394
def macro_japan_interest_rate() -> pd.DataFrame:
395
"""Bank of Japan policy rates"""
396
397
# Get Japanese economic indicators
398
japan_cpi = ak.macro_japan_cpi()
399
japan_gdp = ak.macro_japan_gdp()
400
japan_rates = ak.macro_japan_interest_rate()
401
```
402
403
### Australia Economic Data
404
```python { .api }
405
import akshare as ak
406
407
def macro_australia_cpi() -> pd.DataFrame:
408
"""Australian Consumer Price Index"""
409
410
def macro_australia_gdp() -> pd.DataFrame:
411
"""Australian GDP data"""
412
413
def macro_australia_employment() -> pd.DataFrame:
414
"""Australian employment statistics"""
415
416
# Get Australian economic data
417
aus_cpi = ak.macro_australia_cpi()
418
aus_gdp = ak.macro_australia_gdp()
419
aus_employment = ak.macro_australia_employment()
420
```
421
422
### Canada Economic Data
423
```python { .api }
424
import akshare as ak
425
426
def macro_canada_cpi() -> pd.DataFrame:
427
"""Canadian Consumer Price Index"""
428
429
def macro_canada_gdp() -> pd.DataFrame:
430
"""Canadian GDP data"""
431
432
def macro_canada_employment() -> pd.DataFrame:
433
"""Canadian employment data"""
434
435
# Get Canadian economic indicators
436
canada_cpi = ak.macro_canada_cpi()
437
canada_gdp = ak.macro_canada_gdp()
438
canada_employment = ak.macro_canada_employment()
439
```
440
441
### United Kingdom Economic Data
442
```python { .api }
443
import akshare as ak
444
445
def macro_uk_cpi() -> pd.DataFrame:
446
"""UK Consumer Price Index"""
447
448
def macro_uk_gdp() -> pd.DataFrame:
449
"""UK GDP quarterly data"""
450
451
def macro_uk_employment() -> pd.DataFrame:
452
"""UK employment statistics"""
453
454
# Get UK economic data
455
uk_cpi = ak.macro_uk_cpi()
456
uk_gdp = ak.macro_uk_gdp()
457
uk_employment = ak.macro_uk_employment()
458
```
459
460
## Economic Calendar and Events
461
462
### Economic Event Calendar
463
```python { .api }
464
import akshare as ak
465
466
def macro_economic_calendar() -> pd.DataFrame:
467
"""
468
Economic event calendar with scheduled releases
469
470
Returns:
471
pd.DataFrame: Upcoming economic events and indicators
472
"""
473
474
# Get economic calendar
475
calendar_df = ak.macro_economic_calendar()
476
```
477
478
## Data Integration Patterns
479
480
### Cross-Country Analysis
481
```python { .api }
482
import akshare as ak
483
import pandas as pd
484
485
def get_global_cpi_comparison() -> pd.DataFrame:
486
"""Compare CPI across major economies"""
487
488
# Get CPI data from major economies
489
china_cpi = ak.macro_china_cpi()
490
us_cpi = ak.macro_usa_cpi()
491
euro_cpi = ak.macro_euro_cpi()
492
japan_cpi = ak.macro_japan_cpi()
493
494
# Process and combine data for comparison
495
# (Implementation would involve data alignment and merging)
496
497
return combined_cpi_df
498
499
def get_global_gdp_comparison() -> pd.DataFrame:
500
"""Compare GDP growth across major economies"""
501
502
china_gdp = ak.macro_china_gdp()
503
us_gdp = ak.macro_usa_gdp()
504
euro_gdp = ak.macro_euro_gdp()
505
japan_gdp = ak.macro_japan_gdp()
506
507
return combined_gdp_df
508
509
# Usage
510
global_cpi = get_global_cpi_comparison()
511
global_gdp = get_global_gdp_comparison()
512
```
513
514
### Economic Indicator Dashboard
515
```python { .api }
516
import akshare as ak
517
518
def create_economic_dashboard(country: str = "china") -> dict:
519
"""Create comprehensive economic indicator dashboard"""
520
521
dashboard = {}
522
523
if country.lower() == "china":
524
dashboard.update({
525
'cpi': ak.macro_china_cpi(),
526
'gdp': ak.macro_china_gdp(),
527
'pmi': ak.macro_china_pmi(),
528
'money_supply': ak.macro_china_money_supply(),
529
'trade': ak.macro_china_trade(),
530
'interest_rate': ak.macro_china_interest_rate()
531
})
532
elif country.lower() == "usa":
533
dashboard.update({
534
'cpi': ak.macro_usa_cpi(),
535
'gdp': ak.macro_usa_gdp(),
536
'employment': ak.macro_usa_non_farm(),
537
'unemployment': ak.macro_usa_unemployment_rate(),
538
'pmi': ak.macro_usa_ism_pmi(),
539
'industrial': ak.macro_usa_industrial_production()
540
})
541
542
return dashboard
543
544
# Usage
545
china_dashboard = create_economic_dashboard("china")
546
us_dashboard = create_economic_dashboard("usa")
547
```
548
549
## Data Characteristics
550
551
### Update Frequencies
552
- **Monthly indicators**: CPI, PPI, Industrial Production, Trade Data
553
- **Quarterly indicators**: GDP, Fixed Asset Investment
554
- **Weekly indicators**: Money Supply (some components)
555
- **Daily indicators**: Interest Rates, Exchange Rates
556
557
### Data Coverage
558
- **Historical depth**: Most indicators cover 10+ years of history
559
- **Geographic coverage**: 7 major economies/regions
560
- **Indicator breadth**: 226 different economic metrics
561
- **Release timeliness**: Data typically available within days of official release
562
563
### Common Use Cases
564
1. **Macroeconomic Research**: Cross-country economic analysis
565
2. **Investment Strategy**: Economic cycle and policy analysis
566
3. **Risk Management**: Economic indicator monitoring for market risk
567
4. **Academic Research**: Economic data for empirical studies
568
5. **Policy Analysis**: Central bank and government policy impact assessment
569
570
The economic data capabilities in AKShare provide comprehensive coverage for macroeconomic analysis across major global economies, supporting both academic research and practical investment decision-making.