or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

advanced-features.mdaws-integration.mdcircuits.mddevices-simulation.mdindex.mdquantum-information.md

advanced-features.mddocs/

0

# Advanced Quantum Computing Features

1

2

Advanced quantum computing paradigms including Analog Hamiltonian Simulation (AHS), quantum annealing, pulse-level control, error mitigation, and experimental capabilities.

3

4

## Core Imports

5

6

```python { .api }

7

# Analog Hamiltonian Simulation

8

from braket.ahs import (

9

AnalogHamiltonianSimulation, AtomArrangement, AtomArrangementItem, SiteType,

10

Canvas, DiscretizationProperties, DrivingField, Field, Hamiltonian,

11

LocalDetuning, Pattern, ShiftingField

12

)

13

14

# Quantum Annealing

15

from braket.annealing import Problem, ProblemType

16

17

# Pulse Control

18

from braket.pulse import (

19

Frame, Port, PulseSequence, ArbitraryWaveform, ConstantWaveform,

20

DragGaussianWaveform, ErfSquareWaveform, GaussianWaveform

21

)

22

23

# Error Mitigation

24

from braket.error_mitigation import Debias, ErrorMitigation

25

26

# Experimental Capabilities

27

from braket.experimental_capabilities import EnableExperimentalCapability

28

```

29

30

## Analog Hamiltonian Simulation (AHS)

31

32

### AHS Program Construction

33

34

```python { .api }

35

from braket.ahs import AnalogHamiltonianSimulation, Hamiltonian, AtomArrangement

36

import numpy as np

37

38

class AnalogHamiltonianSimulation:

39

"""Main AHS program for neutral atom quantum computing."""

40

41

def __init__(self):

42

"""Initialize empty AHS program."""

43

self.hamiltonian = None

44

self.atom_arrangement = None

45

self.discretization_properties = None

46

47

@classmethod

48

def create(

49

cls,

50

atom_arrangement: 'AtomArrangement',

51

hamiltonian: 'Hamiltonian',

52

discretization_properties: 'DiscretizationProperties' = None

53

) -> 'AnalogHamiltonianSimulation':

54

"""

55

Create AHS program with atom arrangement and Hamiltonian.

56

57

Args:

58

atom_arrangement: Spatial arrangement of neutral atoms

59

hamiltonian: Time-dependent Hamiltonian specification

60

discretization_properties: Time discretization settings

61

62

Returns:

63

AnalogHamiltonianSimulation: Complete AHS program

64

"""

65

pass

66

67

def to_ir(self) -> dict:

68

"""

69

Convert to intermediate representation for device execution.

70

71

Returns:

72

dict: AHS program in device-compatible format

73

"""

74

pass

75

76

class AtomArrangement:

77

"""Atom position arrangement for AHS."""

78

79

def __init__(self):

80

"""Initialize empty atom arrangement."""

81

self.sites = []

82

83

def add(self, coordinate: tuple[float, float], site_type: 'SiteType' = None) -> 'AtomArrangement':

84

"""

85

Add atom site to arrangement.

86

87

Args:

88

coordinate: (x, y) position in micrometers

89

site_type: Type of site (filled or vacant)

90

91

Returns:

92

AtomArrangement: Self for method chaining

93

"""

94

pass

95

96

def add_item(self, item: 'AtomArrangementItem') -> 'AtomArrangement':

97

"""

98

Add pre-configured arrangement item.

99

100

Args:

101

item: Atom arrangement item

102

103

Returns:

104

AtomArrangement: Self for method chaining

105

"""

106

pass

107

108

@property

109

def coordinate_list(self) -> list[tuple[float, float]]:

110

"""Get list of atom coordinates."""

111

pass

112

113

def visualize(self) -> 'Canvas':

114

"""

115

Create visualization of atom arrangement.

116

117

Returns:

118

Canvas: Visual representation of atom layout

119

"""

120

pass

121

122

class AtomArrangementItem:

123

"""Individual atom arrangement item."""

124

125

def __init__(self, coordinate: tuple[float, float], site_type: 'SiteType'):

126

"""

127

Initialize atom arrangement item.

128

129

Args:

130

coordinate: (x, y) position in micrometers

131

site_type: Type of site

132

"""

133

self.coordinate = coordinate

134

self.site_type = site_type

135

136

class SiteType:

137

"""Site type enumeration for atom arrangements."""

138

139

FILLED = "filled"

140

VACANT = "vacant"

141

142

# AHS program examples

143

def create_rydberg_blockade_program(lattice_spacing: float = 5.0) -> AnalogHamiltonianSimulation:

144

"""

145

Create AHS program for Rydberg blockade physics.

146

147

Args:

148

lattice_spacing: Spacing between atoms in micrometers

149

150

Returns:

151

AnalogHamiltonianSimulation: Rydberg blockade AHS program

152

"""

153

# Create square lattice of atoms

154

arrangement = AtomArrangement()

155

n_atoms_per_side = 3

156

157

for i in range(n_atoms_per_side):

158

for j in range(n_atoms_per_side):

159

x = i * lattice_spacing

160

y = j * lattice_spacing

161

arrangement.add((x, y), SiteType.FILLED)

162

163

# Create time-dependent Hamiltonian

164

# H = Ω(t)/2 ∑ᵢ (σˣⁱ) - Δ(t) ∑ᵢ nᵢ + ∑ᵢⱼ V_ij nᵢnⱼ

165

hamiltonian = create_rydberg_hamiltonian()

166

167

# Time evolution settings

168

discretization = DiscretizationProperties(

169

time_step=1e-7, # 0.1 microseconds

170

time_series_precision=1e-9

171

)

172

173

return AnalogHamiltonianSimulation.create(

174

arrangement, hamiltonian, discretization

175

)

176

177

def create_quantum_annealing_ahs_program() -> AnalogHamiltonianSimulation:

178

"""

179

Create AHS program for quantum annealing-like evolution.

180

181

Returns:

182

AnalogHamiltonianSimulation: Quantum annealing AHS program

183

"""

184

# Linear chain for transverse-field Ising model

185

arrangement = AtomArrangement()

186

chain_length = 5

187

spacing = 8.0 # micrometers

188

189

for i in range(chain_length):

190

arrangement.add((i * spacing, 0.0), SiteType.FILLED)

191

192

# Create annealing schedule

193

total_time = 2.0 # microseconds

194

195

# Driving field (transverse field analog)

196

driving_amplitude = create_annealing_schedule(

197

initial_value=2*np.pi * 10, # MHz

198

final_value=0.0,

199

total_time=total_time

200

)

201

202

# Detuning (longitudinal field)

203

detuning = create_annealing_schedule(

204

initial_value=0.0,

205

final_value=2*np.pi * 5, # MHz

206

total_time=total_time

207

)

208

209

hamiltonian = Hamiltonian()

210

hamiltonian.driving_field = DrivingField(

211

amplitude=driving_amplitude,

212

phase=Pattern.constant(0.0),

213

detuning=detuning

214

)

215

216

return AnalogHamiltonianSimulation.create(arrangement, hamiltonian)

217

218

def analyze_ahs_program(ahs_program: AnalogHamiltonianSimulation) -> dict:

219

"""

220

Analyze AHS program for physics insights and optimization.

221

222

Args:

223

ahs_program: AHS program to analyze

224

225

Returns:

226

dict: Comprehensive program analysis

227

"""

228

analysis = {

229

'atom_configuration': {},

230

'hamiltonian_properties': {},

231

'time_evolution': {},

232

'physics_regime': {},

233

'computational_complexity': {}

234

}

235

236

# Analyze atom arrangement

237

coords = ahs_program.atom_arrangement.coordinate_list

238

n_atoms = len(coords)

239

240

analysis['atom_configuration'] = {

241

'atom_count': n_atoms,

242

'spatial_dimension': 2, # 2D arrangements

243

'lattice_spacing': calculate_average_spacing(coords),

244

'geometry': identify_lattice_geometry(coords),

245

'coordination_number': calculate_coordination_numbers(coords)

246

}

247

248

# Analyze Hamiltonian

249

hamiltonian = ahs_program.hamiltonian

250

analysis['hamiltonian_properties'] = {

251

'has_driving_field': hamiltonian.driving_field is not None,

252

'has_local_detuning': hasattr(hamiltonian, 'local_detuning') and hamiltonian.local_detuning is not None,

253

'interaction_range': estimate_interaction_range(coords),

254

'rydberg_blockade_radius': calculate_blockade_radius(coords)

255

}

256

257

# Physics regime analysis

258

if analysis['hamiltonian_properties']['has_driving_field']:

259

analysis['physics_regime']['type'] = 'Rydberg blockade'

260

analysis['physics_regime']['phenomena'] = [

261

'Quantum many-body scarring',

262

'Rydberg crystallization',

263

'Quantum phase transitions'

264

]

265

else:

266

analysis['physics_regime']['type'] = 'Ising-like'

267

analysis['physics_regime']['phenomena'] = [

268

'Ground state optimization',

269

'Quantum annealing',

270

'Combinatorial optimization'

271

]

272

273

# Computational complexity

274

hilbert_space_size = 2 ** n_atoms # Each atom can be |0⟩ or |r⟩

275

analysis['computational_complexity'] = {

276

'hilbert_space_size': hilbert_space_size,

277

'classical_simulation_feasible': n_atoms <= 20,

278

'approximate_methods_needed': n_atoms > 15,

279

'estimated_execution_time': estimate_ahs_execution_time(ahs_program)

280

}

281

282

return analysis

283

284

def calculate_average_spacing(coordinates: list[tuple[float, float]]) -> float:

285

"""Calculate average nearest-neighbor spacing."""

286

if len(coordinates) < 2:

287

return 0.0

288

289

total_distance = 0.0

290

count = 0

291

292

for i, (x1, y1) in enumerate(coordinates):

293

min_distance = float('inf')

294

for j, (x2, y2) in enumerate(coordinates):

295

if i != j:

296

distance = np.sqrt((x2-x1)**2 + (y2-y1)**2)

297

min_distance = min(min_distance, distance)

298

299

if min_distance < float('inf'):

300

total_distance += min_distance

301

count += 1

302

303

return total_distance / count if count > 0 else 0.0

304

```

305

306

### Hamiltonian Specification

307

308

```python { .api }

309

from braket.ahs import Hamiltonian, DrivingField, LocalDetuning, Pattern

310

from braket.timings import TimeSeries

311

312

class Hamiltonian:

313

"""AHS Hamiltonian specification."""

314

315

def __init__(self):

316

"""Initialize empty Hamiltonian."""

317

self.driving_field = None

318

self.local_detuning = None

319

320

def add_driving_field(self, driving_field: 'DrivingField') -> 'Hamiltonian':

321

"""

322

Add global driving field term.

323

324

Args:

325

driving_field: Global Rabi driving field

326

327

Returns:

328

Hamiltonian: Self for method chaining

329

"""

330

self.driving_field = driving_field

331

return self

332

333

def add_local_detuning(self, local_detuning: 'LocalDetuning') -> 'Hamiltonian':

334

"""

335

Add local detuning field.

336

337

Args:

338

local_detuning: Site-dependent detuning field

339

340

Returns:

341

Hamiltonian: Self for method chaining

342

"""

343

self.local_detuning = local_detuning

344

return self

345

346

class DrivingField(Field):

347

"""Hamiltonian driving field for Rabi oscillations."""

348

349

def __init__(

350

self,

351

amplitude: 'Pattern',

352

phase: 'Pattern',

353

detuning: 'Pattern'

354

):

355

"""

356

Initialize driving field.

357

358

Args:

359

amplitude: Time-dependent Rabi frequency Ω(t)

360

phase: Time-dependent phase φ(t)

361

detuning: Time-dependent detuning Δ(t)

362

"""

363

self.amplitude = amplitude

364

self.phase = phase

365

self.detuning = detuning

366

367

class LocalDetuning(Field):

368

"""Local detuning field for site-dependent energy shifts."""

369

370

def __init__(self, magnitude: 'Pattern'):

371

"""

372

Initialize local detuning field.

373

374

Args:

375

magnitude: Spatially-dependent detuning magnitude

376

"""

377

self.magnitude = magnitude

378

379

class Pattern:

380

"""Time-dependent pattern for AHS fields."""

381

382

@staticmethod

383

def constant(value: float) -> 'Pattern':

384

"""

385

Create constant pattern.

386

387

Args:

388

value: Constant value

389

390

Returns:

391

Pattern: Constant pattern

392

"""

393

pass

394

395

@staticmethod

396

def linear(start_value: float, end_value: float, duration: float) -> 'Pattern':

397

"""

398

Create linear interpolation pattern.

399

400

Args:

401

start_value: Initial value

402

end_value: Final value

403

duration: Pattern duration

404

405

Returns:

406

Pattern: Linear interpolation pattern

407

"""

408

pass

409

410

@staticmethod

411

def from_time_series(time_series: TimeSeries) -> 'Pattern':

412

"""

413

Create pattern from time series data.

414

415

Args:

416

time_series: Time-dependent values

417

418

Returns:

419

Pattern: Pattern from time series

420

"""

421

pass

422

423

def create_rydberg_hamiltonian() -> Hamiltonian:

424

"""

425

Create typical Rydberg Hamiltonian for quantum simulation.

426

427

Returns:

428

Hamiltonian: Rydberg blockade Hamiltonian

429

"""

430

hamiltonian = Hamiltonian()

431

432

# Time-dependent Rabi frequency (adiabatic ramp)

433

omega_max = 2*np.pi * 15 # 15 MHz

434

ramp_time = 1.0 # microseconds

435

hold_time = 0.5 # microseconds

436

437

# Create piecewise linear amplitude

438

amplitude_points = [

439

(0.0, 0.0), # Start at zero

440

(ramp_time/4, omega_max), # Ramp up

441

(3*ramp_time/4, omega_max), # Hold

442

(ramp_time, 0.0) # Ramp down

443

]

444

445

amplitude_series = TimeSeries()

446

for time, value in amplitude_points:

447

amplitude_series.add_point(time, value)

448

449

amplitude_pattern = Pattern.from_time_series(amplitude_series)

450

451

# Constant phase and detuning

452

phase_pattern = Pattern.constant(0.0)

453

detuning_pattern = Pattern.constant(0.0)

454

455

# Add driving field

456

driving_field = DrivingField(

457

amplitude=amplitude_pattern,

458

phase=phase_pattern,

459

detuning=detuning_pattern

460

)

461

462

hamiltonian.add_driving_field(driving_field)

463

464

return hamiltonian

465

466

def create_annealing_schedule(initial_value: float, final_value: float, total_time: float) -> Pattern:

467

"""

468

Create annealing schedule pattern for AHS.

469

470

Args:

471

initial_value: Starting parameter value

472

final_value: Ending parameter value

473

total_time: Total annealing time

474

475

Returns:

476

Pattern: Annealing schedule pattern

477

"""

478

# Create smooth S-curve annealing schedule

479

n_points = 100

480

times = np.linspace(0, total_time, n_points)

481

482

# S-curve using tanh function

483

s_values = []

484

for t in times:

485

s = (np.tanh(4 * (t/total_time - 0.5)) + 1) / 2 # Sigmoid from 0 to 1

486

value = initial_value + s * (final_value - initial_value)

487

s_values.append(value)

488

489

# Create time series

490

time_series = TimeSeries()

491

for t, v in zip(times, s_values):

492

time_series.add_point(t, v)

493

494

return Pattern.from_time_series(time_series)

495

```

496

497

## Quantum Annealing

498

499

### Annealing Problem Specification

500

501

```python { .api }

502

from braket.annealing import Problem, ProblemType

503

from enum import Enum

504

505

class ProblemType(Enum):

506

"""Types of annealing problems."""

507

QUBO = "QUBO"

508

ISING = "ISING"

509

510

class Problem:

511

"""Annealing problem specification."""

512

513

def __init__(self, problem_type: ProblemType):

514

"""

515

Initialize annealing problem.

516

517

Args:

518

problem_type: Type of optimization problem (QUBO or Ising)

519

"""

520

self.problem_type = problem_type

521

self.linear = {} # Linear terms

522

self.quadratic = {} # Quadratic terms

523

524

def add_linear(self, variable: int, coefficient: float) -> 'Problem':

525

"""

526

Add linear term to problem.

527

528

Args:

529

variable: Variable index

530

coefficient: Linear coefficient

531

532

Returns:

533

Problem: Self for method chaining

534

"""

535

self.linear[variable] = coefficient

536

return self

537

538

def add_quadratic(self, var1: int, var2: int, coefficient: float) -> 'Problem':

539

"""

540

Add quadratic term to problem.

541

542

Args:

543

var1: First variable index

544

var2: Second variable index

545

coefficient: Quadratic coefficient

546

547

Returns:

548

Problem: Self for method chaining

549

"""

550

self.quadratic[(var1, var2)] = coefficient

551

return self

552

553

def to_dict(self) -> dict:

554

"""

555

Convert problem to dictionary representation.

556

557

Returns:

558

dict: Problem in dictionary format

559

"""

560

return {

561

'type': self.problem_type.value,

562

'linear': self.linear,

563

'quadratic': self.quadratic

564

}

565

566

# Annealing examples

567

def create_max_cut_problem(graph_edges: list[tuple[int, int]]) -> Problem:

568

"""

569

Create Max-Cut problem for quantum annealing.

570

571

Args:

572

graph_edges: List of graph edges as (node1, node2) pairs

573

574

Returns:

575

Problem: Max-Cut QUBO formulation

576

"""

577

problem = Problem(ProblemType.QUBO)

578

579

# Max-Cut QUBO formulation: maximize ∑ᵢⱼ wᵢⱼ xᵢ(1-xⱼ) + wᵢⱼ(1-xᵢ)xⱼ

580

# Equivalent to: minimize -∑ᵢⱼ wᵢⱼ(xᵢ + xⱼ - 2xᵢxⱼ)

581

582

# Assume unit weights for simplicity

583

nodes = set()

584

for i, j in graph_edges:

585

nodes.add(i)

586

nodes.add(j)

587

588

# Linear terms: -wᵢⱼ for each edge (i,j)

589

linear_coeffs = {}

590

for i, j in graph_edges:

591

linear_coeffs[i] = linear_coeffs.get(i, 0) - 1

592

linear_coeffs[j] = linear_coeffs.get(j, 0) - 1

593

594

for node, coeff in linear_coeffs.items():

595

problem.add_linear(node, coeff)

596

597

# Quadratic terms: +2wᵢⱼ for each edge (i,j)

598

for i, j in graph_edges:

599

problem.add_quadratic(i, j, 2.0)

600

601

return problem

602

603

def create_number_partitioning_problem(numbers: list[int]) -> Problem:

604

"""

605

Create number partitioning problem for quantum annealing.

606

607

Args:

608

numbers: List of numbers to partition into equal-sum sets

609

610

Returns:

611

Problem: Number partitioning QUBO formulation

612

"""

613

problem = Problem(ProblemType.QUBO)

614

615

# Number partitioning: minimize (∑ᵢ aᵢxᵢ - S/2)²

616

# where S = ∑ᵢ aᵢ is total sum

617

S = sum(numbers)

618

target = S // 2 # Target sum for each partition

619

620

# Expand: (∑ᵢ aᵢxᵢ - target)² = ∑ᵢ aᵢ²xᵢ + 2∑ᵢⱼ aᵢaⱼxᵢxⱼ - 2target∑ᵢ aᵢxᵢ + target²

621

# Ignore constant target² term

622

623

# Linear terms: aᵢ² - 2target·aᵢ

624

for i, a in enumerate(numbers):

625

linear_coeff = a*a - 2*target*a

626

problem.add_linear(i, linear_coeff)

627

628

# Quadratic terms: 2aᵢaⱼ for i < j

629

for i in range(len(numbers)):

630

for j in range(i+1, len(numbers)):

631

quadratic_coeff = 2 * numbers[i] * numbers[j]

632

problem.add_quadratic(i, j, quadratic_coeff)

633

634

return problem

635

636

def create_portfolio_optimization_problem(returns: list[float], risks: list[list[float]], risk_penalty: float = 1.0) -> Problem:

637

"""

638

Create portfolio optimization problem for quantum annealing.

639

640

Args:

641

returns: Expected returns for each asset

642

risks: Risk covariance matrix

643

risk_penalty: Risk penalty parameter λ

644

645

Returns:

646

Problem: Portfolio optimization QUBO formulation

647

"""

648

problem = Problem(ProblemType.QUBO)

649

n_assets = len(returns)

650

651

# Portfolio optimization: maximize ∑ᵢ rᵢxᵢ - λ ∑ᵢⱼ σᵢⱼxᵢxⱼ

652

# Convert to minimization: minimize -∑ᵢ rᵢxᵢ + λ ∑ᵢⱼ σᵢⱼxᵢxⱼ

653

654

# Linear terms: -rᵢ (negative expected returns)

655

for i, r in enumerate(returns):

656

problem.add_linear(i, -r)

657

658

# Quadratic terms: λσᵢⱼ (risk penalties)

659

for i in range(n_assets):

660

for j in range(i, n_assets):

661

if i == j:

662

# Diagonal terms (variance)

663

risk_coeff = risk_penalty * risks[i][j]

664

problem.add_linear(i, risk_coeff) # Add to diagonal

665

else:

666

# Off-diagonal terms (covariance)

667

risk_coeff = risk_penalty * risks[i][j]

668

problem.add_quadratic(i, j, 2 * risk_coeff) # Factor of 2 for symmetry

669

670

return problem

671

672

def analyze_annealing_problem(problem: Problem) -> dict:

673

"""

674

Analyze quantum annealing problem for optimization insights.

675

676

Args:

677

problem: Annealing problem to analyze

678

679

Returns:

680

dict: Problem analysis and optimization recommendations

681

"""

682

analysis = {

683

'problem_structure': {},

684

'complexity_metrics': {},

685

'annealing_parameters': {},

686

'optimization_difficulty': {}

687

}

688

689

# Analyze problem structure

690

n_variables = len(set(list(problem.linear.keys()) +

691

[var for pair in problem.quadratic.keys() for var in pair]))

692

n_linear_terms = len(problem.linear)

693

n_quadratic_terms = len(problem.quadratic)

694

695

analysis['problem_structure'] = {

696

'problem_type': problem.problem_type.value,

697

'variable_count': n_variables,

698

'linear_terms': n_linear_terms,

699

'quadratic_terms': n_quadratic_terms,

700

'density': n_quadratic_terms / (n_variables * (n_variables - 1) / 2) if n_variables > 1 else 0

701

}

702

703

# Complexity analysis

704

coefficient_magnitudes = (list(problem.linear.values()) +

705

list(problem.quadratic.values()))

706

707

analysis['complexity_metrics'] = {

708

'coefficient_range': (min(coefficient_magnitudes), max(coefficient_magnitudes)),

709

'coefficient_std': np.std(coefficient_magnitudes),

710

'sparsity': 1 - (n_linear_terms + n_quadratic_terms) / (n_variables + n_variables**2/2),

711

'conditioning': max(coefficient_magnitudes) / min(abs(c) for c in coefficient_magnitudes if c != 0)

712

}

713

714

# Annealing parameter recommendations

715

if analysis['complexity_metrics']['conditioning'] > 100:

716

recommended_annealing_time = 'Long (>100μs)'

717

recommended_schedule = 'Slow linear or exponential'

718

else:

719

recommended_annealing_time = 'Standard (20-50μs)'

720

recommended_schedule = 'Linear or fast exponential'

721

722

analysis['annealing_parameters'] = {

723

'recommended_annealing_time': recommended_annealing_time,

724

'recommended_schedule': recommended_schedule,

725

'suggested_repetitions': max(1000, 10 * n_variables),

726

'post_processing': 'Consider classical refinement for large problems'

727

}

728

729

return analysis

730

```

731

732

## Pulse-Level Control

733

734

### Pulse Sequence Programming

735

736

```python { .api }

737

from braket.pulse import PulseSequence, Frame, Port

738

import numpy as np

739

740

class PulseSequence:

741

"""Sequence of pulse operations for direct hardware control."""

742

743

def __init__(self):

744

"""Initialize empty pulse sequence."""

745

self.operations = []

746

self.duration = 0.0

747

748

def play(self, frame: 'Frame', waveform: 'Waveform') -> 'PulseSequence':

749

"""

750

Play waveform on specified frame.

751

752

Args:

753

frame: Target frame for pulse

754

waveform: Pulse waveform to play

755

756

Returns:

757

PulseSequence: Self for method chaining

758

"""

759

pass

760

761

def delay(self, frame: 'Frame', duration: float) -> 'PulseSequence':

762

"""

763

Add delay on frame.

764

765

Args:

766

frame: Target frame

767

duration: Delay duration in seconds

768

769

Returns:

770

PulseSequence: Self for method chaining

771

"""

772

pass

773

774

def shift_frequency(self, frame: 'Frame', frequency: float) -> 'PulseSequence':

775

"""

776

Shift frame frequency.

777

778

Args:

779

frame: Target frame

780

frequency: Frequency shift in Hz

781

782

Returns:

783

PulseSequence: Self for method chaining

784

"""

785

pass

786

787

def set_phase(self, frame: 'Frame', phase: float) -> 'PulseSequence':

788

"""

789

Set frame phase.

790

791

Args:

792

frame: Target frame

793

phase: Phase in radians

794

795

Returns:

796

PulseSequence: Self for method chaining

797

"""

798

pass

799

800

def barrier(self, frames: list['Frame']) -> 'PulseSequence':

801

"""

802

Add synchronization barrier across frames.

803

804

Args:

805

frames: Frames to synchronize

806

807

Returns:

808

PulseSequence: Self for method chaining

809

"""

810

pass

811

812

class Frame:

813

"""Pulse frame definition for frequency and phase tracking."""

814

815

def __init__(

816

self,

817

frame_id: str,

818

port: 'Port',

819

frequency: float,

820

phase: float = 0.0

821

):

822

"""

823

Initialize pulse frame.

824

825

Args:

826

frame_id: Unique frame identifier

827

port: Associated hardware port

828

frequency: Frame frequency in Hz

829

phase: Initial phase in radians

830

"""

831

self.frame_id = frame_id

832

self.port = port

833

self.frequency = frequency

834

self.phase = phase

835

836

class Port:

837

"""Hardware port specification."""

838

839

def __init__(self, port_id: str, dt: float):

840

"""

841

Initialize hardware port.

842

843

Args:

844

port_id: Unique port identifier

845

dt: Port time resolution in seconds

846

"""

847

self.port_id = port_id

848

self.dt = dt

849

850

# Waveform definitions

851

class GaussianWaveform:

852

"""Gaussian pulse waveform."""

853

854

def __init__(

855

self,

856

length: float,

857

amplitude: float,

858

sigma: float

859

):

860

"""

861

Initialize Gaussian waveform.

862

863

Args:

864

length: Pulse length in seconds

865

amplitude: Peak amplitude

866

sigma: Gaussian width parameter

867

"""

868

self.length = length

869

self.amplitude = amplitude

870

self.sigma = sigma

871

872

class DragGaussianWaveform:

873

"""DRAG (Derivative Removal by Adiabatic Gating) Gaussian waveform."""

874

875

def __init__(

876

self,

877

length: float,

878

amplitude: float,

879

sigma: float,

880

beta: float

881

):

882

"""

883

Initialize DRAG Gaussian waveform.

884

885

Args:

886

length: Pulse length in seconds

887

amplitude: Peak amplitude

888

sigma: Gaussian width parameter

889

beta: DRAG correction parameter

890

"""

891

self.length = length

892

self.amplitude = amplitude

893

self.sigma = sigma

894

self.beta = beta

895

896

class ConstantWaveform:

897

"""Constant amplitude waveform."""

898

899

def __init__(self, length: float, amplitude: float):

900

"""

901

Initialize constant waveform.

902

903

Args:

904

length: Pulse length in seconds

905

amplitude: Constant amplitude

906

"""

907

self.length = length

908

self.amplitude = amplitude

909

910

class ArbitraryWaveform:

911

"""Custom arbitrary waveform."""

912

913

def __init__(self, amplitudes: list[complex]):

914

"""

915

Initialize arbitrary waveform.

916

917

Args:

918

amplitudes: Time-sampled amplitude values

919

"""

920

self.amplitudes = amplitudes

921

self.length = len(amplitudes)

922

923

# Pulse programming examples

924

def create_single_qubit_pulse_gate(qubit_frequency: float, rabi_frequency: float, gate_type: str) -> PulseSequence:

925

"""

926

Create pulse sequence for single-qubit gate.

927

928

Args:

929

qubit_frequency: Qubit transition frequency in Hz

930

rabi_frequency: Rabi frequency for π-pulse in Hz

931

gate_type: Type of gate ('X', 'Y', 'Z', 'H')

932

933

Returns:

934

PulseSequence: Pulse sequence implementing the gate

935

"""

936

sequence = PulseSequence()

937

938

# Define hardware components

939

port = Port("drive_port", dt=1e-9) # 1 ns resolution

940

frame = Frame("qubit_frame", port, qubit_frequency)

941

942

if gate_type == 'X':

943

# π-pulse around X-axis

944

pulse_length = 1 / (2 * rabi_frequency) # π-pulse duration

945

waveform = GaussianWaveform(

946

length=pulse_length,

947

amplitude=rabi_frequency * 2 * np.pi,

948

sigma=pulse_length / 4

949

)

950

sequence.play(frame, waveform)

951

952

elif gate_type == 'Y':

953

# π-pulse around Y-axis (π/2 phase shift)

954

pulse_length = 1 / (2 * rabi_frequency)

955

sequence.set_phase(frame, np.pi/2)

956

waveform = GaussianWaveform(

957

length=pulse_length,

958

amplitude=rabi_frequency * 2 * np.pi,

959

sigma=pulse_length / 4

960

)

961

sequence.play(frame, waveform)

962

sequence.set_phase(frame, 0) # Reset phase

963

964

elif gate_type == 'H':

965

# Hadamard via Y(π/2) - X(π) - Y(π/2) decomposition

966

pulse_length = 1 / (4 * rabi_frequency) # π/2-pulse duration

967

968

# First Y(π/2)

969

sequence.set_phase(frame, np.pi/2)

970

y_pulse = GaussianWaveform(

971

length=pulse_length,

972

amplitude=rabi_frequency * 2 * np.pi,

973

sigma=pulse_length / 4

974

)

975

sequence.play(frame, y_pulse)

976

977

# X(π)

978

sequence.set_phase(frame, 0)

979

x_pulse = GaussianWaveform(

980

length=2*pulse_length,

981

amplitude=rabi_frequency * 2 * np.pi,

982

sigma=pulse_length / 2

983

)

984

sequence.play(frame, x_pulse)

985

986

# Final Y(π/2)

987

sequence.set_phase(frame, np.pi/2)

988

sequence.play(frame, y_pulse)

989

sequence.set_phase(frame, 0)

990

991

return sequence

992

993

def create_two_qubit_cross_resonance_gate(

994

control_freq: float,

995

target_freq: float,

996

cr_amplitude: float

997

) -> PulseSequence:

998

"""

999

Create cross-resonance pulse sequence for two-qubit gate.

1000

1001

Args:

1002

control_freq: Control qubit frequency in Hz

1003

target_freq: Target qubit frequency in Hz

1004

cr_amplitude: Cross-resonance drive amplitude

1005

1006

Returns:

1007

PulseSequence: Cross-resonance gate pulse sequence

1008

"""

1009

sequence = PulseSequence()

1010

1011

# Hardware setup

1012

control_port = Port("control_port", dt=1e-9)

1013

target_port = Port("target_port", dt=1e-9)

1014

1015

control_frame = Frame("control_frame", control_port, control_freq)

1016

target_frame = Frame("target_frame", target_port, target_freq)

1017

1018

# Cross-resonance drive on target frequency via control port

1019

cr_frame = Frame("cr_frame", control_port, target_freq)

1020

1021

# Cross-resonance pulse (flat-top with Gaussian edges)

1022

cr_duration = 320e-9 # 320 ns typical CR gate time

1023

rise_time = 20e-9 # 20 ns rise/fall time

1024

1025

# Rising edge

1026

rise_waveform = GaussianWaveform(

1027

length=rise_time,

1028

amplitude=cr_amplitude,

1029

sigma=rise_time / 4

1030

)

1031

1032

# Flat top

1033

flat_duration = cr_duration - 2 * rise_time

1034

flat_waveform = ConstantWaveform(flat_duration, cr_amplitude)

1035

1036

# Falling edge

1037

fall_waveform = GaussianWaveform(

1038

length=rise_time,

1039

amplitude=-cr_amplitude, # Negative for falling

1040

sigma=rise_time / 4

1041

)

1042

1043

# Play CR pulse sequence

1044

sequence.play(cr_frame, rise_waveform)

1045

sequence.play(cr_frame, flat_waveform)

1046

sequence.play(cr_frame, fall_waveform)

1047

1048

# Echo cancellation pulses on control qubit

1049

echo_pulse = GaussianWaveform(

1050

length=cr_duration,

1051

amplitude=cr_amplitude / 4, # Reduced amplitude

1052

sigma=cr_duration / 8

1053

)

1054

sequence.play(control_frame, echo_pulse)

1055

1056

# Synchronization barrier

1057

sequence.barrier([control_frame, target_frame, cr_frame])

1058

1059

return sequence

1060

1061

def optimize_pulse_fidelity(

1062

target_unitary: np.ndarray,

1063

pulse_parameters: dict,

1064

constraints: dict

1065

) -> dict:

1066

"""

1067

Optimize pulse sequence for maximum gate fidelity.

1068

1069

Args:

1070

target_unitary: Target gate unitary matrix

1071

pulse_parameters: Initial pulse parameter values

1072

constraints: Hardware and physics constraints

1073

1074

Returns:

1075

dict: Optimized pulse parameters and fidelity analysis

1076

"""

1077

optimization_result = {

1078

'optimized_parameters': {},

1079

'achieved_fidelity': 0.0,

1080

'optimization_history': [],

1081

'constraint_violations': {},

1082

'recommendations': []

1083

}

1084

1085

# Extract constraints

1086

max_amplitude = constraints.get('max_amplitude', 1e8) # Hz

1087

min_duration = constraints.get('min_duration', 1e-9) # s

1088

max_duration = constraints.get('max_duration', 1e-6) # s

1089

1090

# Simplified optimization (would use gradient-based methods)

1091

initial_amplitude = pulse_parameters.get('amplitude', max_amplitude / 2)

1092

initial_duration = pulse_parameters.get('duration', 50e-9)

1093

initial_sigma = pulse_parameters.get('sigma', initial_duration / 4)

1094

1095

# Grid search over parameter space (simplified)

1096

best_fidelity = 0.0

1097

best_params = pulse_parameters.copy()

1098

1099

amplitude_range = np.linspace(max_amplitude/10, max_amplitude, 10)

1100

duration_range = np.linspace(min_duration*10, max_duration/10, 10)

1101

1102

for amp in amplitude_range:

1103

for dur in duration_range:

1104

# Simulate gate with these parameters

1105

simulated_fidelity = simulate_pulse_gate_fidelity(

1106

target_unitary, amp, dur, dur/4

1107

)

1108

1109

if simulated_fidelity > best_fidelity:

1110

best_fidelity = simulated_fidelity

1111

best_params = {

1112

'amplitude': amp,

1113

'duration': dur,

1114

'sigma': dur/4

1115

}

1116

1117

optimization_result['optimized_parameters'] = best_params

1118

optimization_result['achieved_fidelity'] = best_fidelity

1119

1120

# Generate recommendations

1121

if best_fidelity < 0.99:

1122

optimization_result['recommendations'].append(

1123

"Consider DRAG correction for improved fidelity"

1124

)

1125

1126

if best_params['duration'] > max_duration / 2:

1127

optimization_result['recommendations'].append(

1128

"Long pulse duration may increase decoherence"

1129

)

1130

1131

return optimization_result

1132

1133

def simulate_pulse_gate_fidelity(target_unitary: np.ndarray, amplitude: float, duration: float, sigma: float) -> float:

1134

"""Simplified pulse gate fidelity simulation."""

1135

# This would involve solving the Schrödinger equation

1136

# For now, return a mock fidelity based on parameter reasonableness

1137

1138

# Assume optimal parameters give ~99% fidelity

1139

optimal_duration = 50e-9 # 50 ns

1140

optimal_amplitude = 1e7 # 10 MHz

1141

1142

duration_factor = 1 - abs(duration - optimal_duration) / optimal_duration

1143

amplitude_factor = 1 - abs(amplitude - optimal_amplitude) / optimal_amplitude

1144

1145

fidelity = 0.95 * duration_factor * amplitude_factor

1146

return max(0.5, min(0.999, fidelity)) # Clamp between 50% and 99.9%

1147

```

1148

1149

## Error Mitigation

1150

1151

### Error Mitigation Techniques

1152

1153

```python { .api }

1154

from braket.error_mitigation import ErrorMitigation, Debias

1155

1156

class ErrorMitigation:

1157

"""Base error mitigation interface."""

1158

1159

def mitigate(self, task_results: list) -> list:

1160

"""

1161

Apply error mitigation to task results.

1162

1163

Args:

1164

task_results: Raw quantum task results

1165

1166

Returns:

1167

list: Mitigated results

1168

"""

1169

pass

1170

1171

class Debias(ErrorMitigation):

1172

"""Debiasing error mitigation technique."""

1173

1174

def __init__(self, noise_model=None):

1175

"""

1176

Initialize debiasing error mitigation.

1177

1178

Args:

1179

noise_model: Optional noise model for correction

1180

"""

1181

self.noise_model = noise_model

1182

1183

def mitigate(self, task_results: list) -> list:

1184

"""

1185

Apply debiasing to measurement results.

1186

1187

Args:

1188

task_results: Task results to debias

1189

1190

Returns:

1191

list: Debiased results

1192

"""

1193

pass

1194

1195

# Error mitigation examples

1196

def implement_zero_noise_extrapolation(

1197

circuit,

1198

device,

1199

noise_scaling_factors: list[float] = [1.0, 2.0, 3.0]

1200

) -> dict:

1201

"""

1202

Implement zero-noise extrapolation (ZNE) error mitigation.

1203

1204

Args:

1205

circuit: Quantum circuit to execute with error mitigation

1206

device: Quantum device for execution

1207

noise_scaling_factors: Noise scaling factors for extrapolation

1208

1209

Returns:

1210

dict: ZNE results and extrapolated values

1211

"""

1212

zne_results = {

1213

'noise_factors': noise_scaling_factors,

1214

'measured_values': [],

1215

'extrapolated_value': 0.0,

1216

'extrapolation_error': 0.0,

1217

'mitigation_overhead': len(noise_scaling_factors)

1218

}

1219

1220

# Execute circuit at different noise levels

1221

for noise_factor in noise_scaling_factors:

1222

# Create noise-scaled circuit (simplified - would need proper implementation)

1223

scaled_circuit = scale_circuit_noise(circuit, noise_factor)

1224

1225

# Execute and measure expectation value

1226

task = device.run(scaled_circuit, shots=10000)

1227

result = task.result()

1228

1229

if hasattr(result, 'values'):

1230

expectation_value = result.values[0]

1231

else:

1232

# Calculate expectation from measurement counts

1233

expectation_value = calculate_expectation_from_counts(

1234

result.measurement_counts

1235

)

1236

1237

zne_results['measured_values'].append(expectation_value)

1238

1239

# Extrapolate to zero noise

1240

extrapolated_value, error = extrapolate_to_zero_noise(

1241

noise_scaling_factors, zne_results['measured_values']

1242

)

1243

1244

zne_results['extrapolated_value'] = extrapolated_value

1245

zne_results['extrapolation_error'] = error

1246

1247

return zne_results

1248

1249

def implement_readout_error_mitigation(

1250

circuits: list,

1251

device,

1252

calibration_shots: int = 10000

1253

) -> dict:

1254

"""

1255

Implement readout error mitigation using confusion matrix.

1256

1257

Args:

1258

circuits: Circuits to execute with readout error correction

1259

device: Quantum device

1260

calibration_shots: Shots for calibration measurements

1261

1262

Returns:

1263

dict: Results with readout error correction applied

1264

"""

1265

mitigation_results = {

1266

'confusion_matrix': None,

1267

'corrected_results': [],

1268

'improvement_metrics': {}

1269

}

1270

1271

# Step 1: Calibrate readout errors

1272

n_qubits = max(circuit.qubit_count for circuit in circuits)

1273

confusion_matrix = calibrate_readout_errors(device, n_qubits, calibration_shots)

1274

mitigation_results['confusion_matrix'] = confusion_matrix

1275

1276

# Step 2: Execute circuits and apply correction

1277

for circuit in circuits:

1278

# Execute circuit

1279

task = device.run(circuit, shots=10000)

1280

raw_counts = task.result().measurement_counts

1281

1282

# Apply readout error correction

1283

corrected_counts = apply_readout_correction(

1284

raw_counts, confusion_matrix

1285

)

1286

1287

mitigation_results['corrected_results'].append({

1288

'circuit_index': len(mitigation_results['corrected_results']),

1289

'raw_counts': raw_counts,

1290

'corrected_counts': corrected_counts

1291

})

1292

1293

# Calculate improvement metrics

1294

mitigation_results['improvement_metrics'] = calculate_mitigation_improvement(

1295

mitigation_results['corrected_results']

1296

)

1297

1298

return mitigation_results

1299

1300

def implement_virtual_distillation(

1301

circuit,

1302

device,

1303

num_copies: int = 5,

1304

shots_per_copy: int = 2000

1305

) -> dict:

1306

"""

1307

Implement virtual distillation error mitigation.

1308

1309

Args:

1310

circuit: Circuit to execute with virtual distillation

1311

device: Quantum device

1312

num_copies: Number of virtual copies

1313

shots_per_copy: Shots per copy

1314

1315

Returns:

1316

dict: Virtual distillation results

1317

"""

1318

vd_results = {

1319

'num_copies': num_copies,

1320

'copy_results': [],

1321

'distilled_result': 0.0,

1322

'variance_reduction': 0.0

1323

}

1324

1325

copy_values = []

1326

1327

# Execute multiple copies of the circuit

1328

for copy_idx in range(num_copies):

1329

task = device.run(circuit, shots=shots_per_copy)

1330

result = task.result()

1331

1332

# Calculate expectation value for this copy

1333

if hasattr(result, 'values'):

1334

expectation = result.values[0]

1335

else:

1336

expectation = calculate_expectation_from_counts(result.measurement_counts)

1337

1338

copy_values.append(expectation)

1339

vd_results['copy_results'].append({

1340

'copy_index': copy_idx,

1341

'expectation_value': expectation,

1342

'measurement_counts': result.measurement_counts

1343

})

1344

1345

# Apply virtual distillation formula

1346

# For odd number of copies: median

1347

# For even number: could use other combining strategies

1348

if num_copies % 2 == 1:

1349

distilled_value = np.median(copy_values)

1350

else:

1351

# Use weighted average with outlier removal

1352

copy_array = np.array(copy_values)

1353

q1, q3 = np.percentile(copy_array, [25, 75])

1354

iqr = q3 - q1

1355

lower_bound = q1 - 1.5 * iqr

1356

upper_bound = q3 + 1.5 * iqr

1357

1358

# Filter outliers and average

1359

filtered_values = copy_array[

1360

(copy_array >= lower_bound) & (copy_array <= upper_bound)

1361

]

1362

distilled_value = np.mean(filtered_values) if len(filtered_values) > 0 else np.mean(copy_array)

1363

1364

vd_results['distilled_result'] = distilled_value

1365

1366

# Calculate variance reduction

1367

raw_variance = np.var(copy_values)

1368

# Virtual distillation typically reduces variance by ~1/sqrt(N)

1369

expected_variance_reduction = 1 / np.sqrt(num_copies)

1370

vd_results['variance_reduction'] = expected_variance_reduction

1371

1372

return vd_results

1373

1374

def scale_circuit_noise(circuit, noise_factor: float):

1375

"""Scale noise in quantum circuit (simplified implementation)."""

1376

# This would involve adding noise gates or modifying existing noise

1377

# For now, return original circuit (real implementation would add noise)

1378

return circuit

1379

1380

def extrapolate_to_zero_noise(noise_factors: list[float], measured_values: list[float]) -> tuple[float, float]:

1381

"""Extrapolate measured values to zero noise using polynomial fit."""

1382

# Linear extrapolation (could use higher-order polynomials)

1383

coeffs = np.polyfit(noise_factors, measured_values, deg=1)

1384

1385

# Extrapolate to zero noise (x=0)

1386

extrapolated_value = coeffs[1] # y-intercept

1387

1388

# Estimate error from fit quality

1389

fit_values = np.polyval(coeffs, noise_factors)

1390

fit_error = np.sqrt(np.mean((np.array(measured_values) - fit_values)**2))

1391

1392

return float(extrapolated_value), float(fit_error)

1393

1394

def calibrate_readout_errors(device, n_qubits: int, shots: int) -> np.ndarray:

1395

"""Calibrate readout error confusion matrix."""

1396

from braket.circuits import Circuit

1397

1398

confusion_matrix = np.zeros((2**n_qubits, 2**n_qubits))

1399

1400

# Measure each computational basis state

1401

for state_idx in range(2**n_qubits):

1402

# Prepare computational basis state |state_idx⟩

1403

prep_circuit = Circuit()

1404

1405

# Convert state index to binary and apply X gates

1406

binary_state = format(state_idx, f'0{n_qubits}b')

1407

for qubit, bit in enumerate(binary_state):

1408

if bit == '1':

1409

prep_circuit.x(qubit)

1410

1411

# Measure

1412

prep_circuit.measure_all()

1413

1414

# Execute calibration measurement

1415

task = device.run(prep_circuit, shots=shots)

1416

counts = task.result().measurement_counts

1417

1418

# Fill confusion matrix row

1419

for measured_state, count in counts.items():

1420

measured_idx = int(measured_state, 2)

1421

confusion_matrix[state_idx, measured_idx] = count / shots

1422

1423

return confusion_matrix

1424

1425

def apply_readout_correction(raw_counts: dict, confusion_matrix: np.ndarray) -> dict:

1426

"""Apply readout error correction using confusion matrix inversion."""

1427

# Convert counts to probability vector

1428

total_shots = sum(raw_counts.values())

1429

n_states = len(confusion_matrix)

1430

1431

measured_probs = np.zeros(n_states)

1432

for bitstring, count in raw_counts.items():

1433

state_idx = int(bitstring, 2)

1434

measured_probs[state_idx] = count / total_shots

1435

1436

# Invert confusion matrix to get corrected probabilities

1437

try:

1438

inv_confusion = np.linalg.inv(confusion_matrix)

1439

corrected_probs = inv_confusion @ measured_probs

1440

1441

# Ensure probabilities are non-negative (physical constraint)

1442

corrected_probs = np.maximum(corrected_probs, 0)

1443

corrected_probs /= np.sum(corrected_probs) # Renormalize

1444

1445

except np.linalg.LinAlgError:

1446

# If matrix is singular, use pseudo-inverse

1447

inv_confusion = np.linalg.pinv(confusion_matrix)

1448

corrected_probs = inv_confusion @ measured_probs

1449

corrected_probs = np.maximum(corrected_probs, 0)

1450

corrected_probs /= np.sum(corrected_probs)

1451

1452

# Convert back to counts

1453

corrected_counts = {}

1454

for state_idx, prob in enumerate(corrected_probs):

1455

if prob > 0:

1456

bitstring = format(state_idx, f'0{int(np.log2(n_states))}b')

1457

corrected_counts[bitstring] = int(prob * total_shots)

1458

1459

return corrected_counts

1460

1461

def calculate_expectation_from_counts(counts: dict) -> float:

1462

"""Calculate expectation value ⟨Z⟩ from measurement counts."""

1463

total_shots = sum(counts.values())

1464

expectation = 0.0

1465

1466

for bitstring, count in counts.items():

1467

# Calculate parity (even=+1, odd=-1)

1468

parity = (-1) ** sum(int(bit) for bit in bitstring)

1469

expectation += parity * count / total_shots

1470

1471

return expectation

1472

```

1473

1474

## Experimental Capabilities

1475

1476

### Experimental Features Access

1477

1478

```python { .api }

1479

from braket.experimental_capabilities import EnableExperimentalCapability

1480

1481

class EnableExperimentalCapability:

1482

"""Context manager for experimental features."""

1483

1484

def __init__(self, capability_name: str):

1485

"""

1486

Initialize experimental capability context.

1487

1488

Args:

1489

capability_name: Name of experimental capability to enable

1490

"""

1491

self.capability_name = capability_name

1492

1493

def __enter__(self) -> 'EnableExperimentalCapability':

1494

"""Enable experimental capability."""

1495

return self

1496

1497

def __exit__(self, exc_type, exc_val, exc_tb) -> None:

1498

"""Disable experimental capability."""

1499

pass

1500

1501

# Experimental features examples

1502

def use_experimental_classical_control():

1503

"""Example of using experimental classical control features."""

1504

1505

with EnableExperimentalCapability("classical_control"):

1506

# Access experimental classical control capabilities

1507

from braket.experimental_capabilities import classical_control

1508

1509

# This would enable features like:

1510

# - Mid-circuit measurements with classical feedback

1511

# - Conditional quantum operations

1512

# - Real-time classical processing during quantum execution

1513

1514

experimental_features = {

1515

'mid_circuit_measurement': True,

1516

'classical_feedback': True,

1517

'conditional_gates': True,

1518

'real_time_processing': True

1519

}

1520

1521

return experimental_features

1522

1523

def explore_advanced_noise_modeling():

1524

"""Explore experimental advanced noise modeling capabilities."""

1525

1526

with EnableExperimentalCapability("advanced_noise"):

1527

# Access experimental noise modeling features

1528

experimental_noise_features = {

1529

'correlated_noise': 'Multi-qubit correlated noise channels',

1530

'time_dependent_noise': 'Time-varying noise parameters',

1531

'device_specific_noise': 'Hardware-calibrated noise models',

1532

'non_markovian_effects': 'Memory effects in noise evolution'

1533

}

1534

1535

return experimental_noise_features

1536

1537

def demonstrate_experimental_optimization():

1538

"""Demonstrate experimental optimization capabilities."""

1539

1540

with EnableExperimentalCapability("advanced_optimization"):

1541

1542

optimization_features = {

1543

'adaptive_shot_allocation': 'Dynamic shot count optimization',

1544

'circuit_cutting': 'Large circuit decomposition',

1545

'error_extrapolation': 'Advanced error extrapolation methods',

1546

'hardware_aware_compilation': 'Device-specific circuit optimization'

1547

}

1548

1549

# Example: Adaptive shot allocation

1550

def adaptive_shot_optimization(circuits: list, target_accuracy: float) -> dict:

1551

"""

1552

Experimental adaptive shot allocation for circuit collection.

1553

1554

Args:

1555

circuits: Circuits requiring optimization

1556

target_accuracy: Target measurement accuracy

1557

1558

Returns:

1559

dict: Optimized shot allocation strategy

1560

"""

1561

shot_allocation = {}

1562

1563

for i, circuit in enumerate(circuits):

1564

# Estimate required shots based on circuit properties

1565

estimated_variance = estimate_measurement_variance(circuit)

1566

required_shots = int(estimated_variance / (target_accuracy**2))

1567

1568

# Apply experimental optimization heuristics

1569

if circuit.depth > 50:

1570

required_shots *= 2 # Deeper circuits need more shots

1571

1572

if has_small_angle_rotations(circuit):

1573

required_shots *= 1.5 # Small angles need higher precision

1574

1575

shot_allocation[f'circuit_{i}'] = {

1576

'required_shots': required_shots,

1577

'estimated_variance': estimated_variance,

1578

'optimization_factor': required_shots / 1000 # Compared to baseline

1579

}

1580

1581

return shot_allocation

1582

1583

return {

1584

'features': optimization_features,

1585

'adaptive_optimizer': adaptive_shot_optimization

1586

}

1587

1588

def estimate_measurement_variance(circuit) -> float:

1589

"""Estimate measurement variance for shot optimization."""

1590

# Simplified variance estimation based on circuit properties

1591

base_variance = 0.25 # Maximum variance for uniform distribution

1592

1593

# Adjust based on circuit depth (deeper = more noise = higher variance)

1594

depth_factor = min(2.0, 1 + circuit.depth / 100)

1595

1596

# Adjust based on number of measured qubits

1597

qubit_factor = circuit.qubit_count / 10

1598

1599

return base_variance * depth_factor * qubit_factor

1600

1601

def has_small_angle_rotations(circuit) -> bool:

1602

"""Check if circuit contains small-angle rotations requiring high precision."""

1603

small_angle_threshold = 0.1 # radians

1604

1605

for instruction in circuit.instructions:

1606

gate = instruction.operator

1607

if hasattr(gate, 'angle'):

1608

if abs(gate.angle) < small_angle_threshold:

1609

return True

1610

1611

return False

1612

1613

def demonstrate_quantum_error_correction_experiments():

1614

"""Demonstrate experimental quantum error correction capabilities."""

1615

1616

with EnableExperimentalCapability("quantum_error_correction"):

1617

1618

qec_experiments = {

1619

'surface_codes': {

1620

'description': 'Surface code implementation and testing',

1621

'min_qubits': 17, # Smallest logical qubit

1622

'features': ['syndrome extraction', 'logical operations', 'error correction']

1623

},

1624

'color_codes': {

1625

'description': 'Color code quantum error correction',

1626

'min_qubits': 7, # 7-qubit color code

1627

'features': ['triangular lattice', 'transversal gates', 'fault tolerance']

1628

},

1629

'repetition_codes': {

1630

'description': 'Simple repetition codes for bit-flip errors',

1631

'min_qubits': 3, # 3-qubit repetition code

1632

'features': ['bit flip correction', 'syndrome measurement', 'majority voting']

1633

}

1634

}

1635

1636

def create_simple_qec_circuit(code_type: str = 'repetition') -> dict:

1637

"""Create simple quantum error correction demonstration circuit."""

1638

from braket.circuits import Circuit

1639

1640

if code_type == 'repetition':

1641

# 3-qubit bit-flip repetition code

1642

circuit = Circuit()

1643

1644

# Encode logical |0⟩ or |1⟩

1645

# |0⟩_L = |000⟩, |1⟩_L = |111⟩

1646

1647

# For |+⟩_L state: (|000⟩ + |111⟩)/√2

1648

circuit.h(0) # Create superposition on first qubit

1649

circuit.cnot(0, 1) # Entangle with second qubit

1650

circuit.cnot(0, 2) # Entangle with third qubit

1651

1652

# Syndrome measurement (detect single bit-flip errors)

1653

circuit.cnot(0, 3) # Ancilla 3: measures X₀X₁

1654

circuit.cnot(1, 3)

1655

1656

circuit.cnot(1, 4) # Ancilla 4: measures X₁X₂

1657

circuit.cnot(2, 4)

1658

1659

# Measure syndrome qubits

1660

circuit.measure([3, 4])

1661

1662

qec_info = {

1663

'circuit': circuit,

1664

'logical_qubits': 1,

1665

'physical_qubits': 3,

1666

'ancilla_qubits': 2,

1667

'correctable_errors': ['single bit flip'],

1668

'code_distance': 3

1669

}

1670

1671

return qec_info

1672

1673

return {

1674

'available_codes': qec_experiments,

1675

'circuit_generator': create_simple_qec_circuit

1676

}

1677

```

1678

1679

## Circuit Emulation and Compilation

1680

1681

### Emulator Infrastructure

1682

1683

```python { .api }

1684

from braket.emulation import Emulator, PassManager

1685

1686

class Emulator:

1687

"""Quantum circuit emulator with compilation passes."""

1688

1689

def __init__(

1690

self,

1691

pass_manager: PassManager = None,

1692

target_device = None

1693

):

1694

"""

1695

Initialize quantum circuit emulator.

1696

1697

Args:

1698

pass_manager: Compilation pass manager

1699

target_device: Target device for emulation properties

1700

"""

1701

self.pass_manager = pass_manager or PassManager()

1702

self.target_device = target_device

1703

1704

def emulate(

1705

self,

1706

circuit,

1707

shots: int = 1000,

1708

inputs: dict = None

1709

):

1710

"""

1711

Emulate quantum circuit with compilation.

1712

1713

Args:

1714

circuit: Quantum circuit to emulate

1715

shots: Number of measurement shots

1716

inputs: Input parameters for parameterized circuits

1717

1718

Returns:

1719

EmulationResult: Emulation results with compilation info

1720

"""

1721

pass

1722

1723

def add_pass(self, pass_instance) -> 'Emulator':

1724

"""

1725

Add compilation pass to emulator.

1726

1727

Args:

1728

pass_instance: Compilation pass to add

1729

1730

Returns:

1731

Emulator: Self for method chaining

1732

"""

1733

self.pass_manager.add_pass(pass_instance)

1734

return self

1735

1736

class PassManager:

1737

"""Compilation pass management for quantum circuits."""

1738

1739

def __init__(self):

1740

"""Initialize empty pass manager."""

1741

self.passes = []

1742

1743

def add_pass(self, pass_instance) -> 'PassManager':

1744

"""

1745

Add compilation pass.

1746

1747

Args:

1748

pass_instance: Pass to add

1749

1750

Returns:

1751

PassManager: Self for method chaining

1752

"""

1753

self.passes.append(pass_instance)

1754

return self

1755

1756

def run(self, circuit):

1757

"""

1758

Run all passes on circuit.

1759

1760

Args:

1761

circuit: Input quantum circuit

1762

1763

Returns:

1764

Circuit: Compiled quantum circuit

1765

"""

1766

compiled_circuit = circuit

1767

for pass_instance in self.passes:

1768

compiled_circuit = pass_instance.run(compiled_circuit)

1769

return compiled_circuit

1770

1771

# Emulation examples

1772

def create_optimized_emulator() -> Emulator:

1773

"""

1774

Create emulator with standard optimization passes.

1775

1776

Returns:

1777

Emulator: Configured emulator with optimization

1778

"""

1779

pass_manager = PassManager()

1780

1781

# Add standard optimization passes

1782

# Note: Actual pass implementations would be more complex

1783

# pass_manager.add_pass(GateCommutationPass())

1784

# pass_manager.add_pass(RedundantGateEliminationPass())

1785

# pass_manager.add_pass(CircuitDepthOptimizationPass())

1786

1787

emulator = Emulator(pass_manager=pass_manager)

1788

return emulator

1789

1790

def benchmark_emulation_performance(circuit) -> dict:

1791

"""

1792

Benchmark emulation vs direct simulation performance.

1793

1794

Args:

1795

circuit: Circuit to benchmark

1796

1797

Returns:

1798

dict: Performance comparison results

1799

"""

1800

import time

1801

from braket.devices import LocalSimulator

1802

1803

benchmark_results = {

1804

'circuit_info': {

1805

'qubit_count': circuit.qubit_count,

1806

'depth': circuit.depth,

1807

'gate_count': len(circuit.instructions)

1808

},

1809

'simulation': {},

1810

'emulation': {}

1811

}

1812

1813

# Direct simulation

1814

simulator = LocalSimulator()

1815

start_time = time.time()

1816

sim_task = simulator.run(circuit, shots=1000)

1817

sim_result = sim_task.result()

1818

sim_time = time.time() - start_time

1819

1820

benchmark_results['simulation'] = {

1821

'execution_time': sim_time,

1822

'compilation_time': 0,

1823

'result_counts': sim_result.measurement_counts

1824

}

1825

1826

# Emulation with compilation

1827

emulator = create_optimized_emulator()

1828

start_time = time.time()

1829

compile_start = time.time()

1830

compiled_circuit = emulator.pass_manager.run(circuit)

1831

compile_time = time.time() - compile_start

1832

1833

emu_result = emulator.emulate(compiled_circuit, shots=1000)

1834

total_emu_time = time.time() - start_time

1835

1836

benchmark_results['emulation'] = {

1837

'execution_time': total_emu_time,

1838

'compilation_time': compile_time,

1839

'optimizations_applied': len(emulator.pass_manager.passes),

1840

'compiled_circuit_depth': compiled_circuit.depth if hasattr(compiled_circuit, 'depth') else 'Unknown'

1841

}

1842

1843

# Performance analysis

1844

benchmark_results['analysis'] = {

1845

'speedup_factor': sim_time / total_emu_time if total_emu_time > 0 else float('inf'),

1846

'compilation_overhead': compile_time / total_emu_time if total_emu_time > 0 else 0,

1847

'depth_reduction': (circuit.depth - (compiled_circuit.depth if hasattr(compiled_circuit, 'depth') else circuit.depth)) / circuit.depth if circuit.depth > 0 else 0

1848

}

1849

1850

return benchmark_results

1851

```

1852

1853

## Experimental Capabilities

1854

1855

### Experimental Feature Access

1856

1857

```python { .api }

1858

from braket.experimental_capabilities import EnableExperimentalCapability

1859

1860

class EnableExperimentalCapability:

1861

"""Context manager for enabling experimental features."""

1862

1863

def __init__(self, capability_name: str):

1864

"""

1865

Initialize experimental capability context.

1866

1867

Args:

1868

capability_name: Name of experimental capability to enable

1869

"""

1870

self.capability_name = capability_name

1871

1872

def __enter__(self):

1873

"""Enter experimental capability context."""

1874

pass

1875

1876

def __exit__(self, exc_type, exc_val, exc_tb):

1877

"""Exit experimental capability context."""

1878

pass

1879

1880

# Experimental capabilities examples

1881

def access_experimental_features() -> dict:

1882

"""

1883

Demonstrate access to experimental quantum computing features.

1884

1885

Returns:

1886

dict: Available experimental capabilities

1887

"""

1888

experimental_features = {

1889

'available_capabilities': [

1890

'classical_control',

1891

'adaptive_circuits',

1892

'real_time_feedback',

1893

'advanced_error_correction',

1894

'novel_gate_sets'

1895

],

1896

'usage_examples': {},

1897

'stability_warnings': {

1898

'api_stability': 'Experimental APIs may change without notice',

1899

'result_reliability': 'Results may vary between SDK versions',

1900

'production_readiness': 'Not recommended for production use'

1901

}

1902

}

1903

1904

# Classical control example (IQM-specific)

1905

def classical_control_example():

1906

"""Demonstrate classical control features."""

1907

try:

1908

with EnableExperimentalCapability('classical_control'):

1909

from braket.experimental_capabilities.iqm import classical_control

1910

1911

# This would enable classical control features

1912

# Actual implementation depends on device support

1913

control_config = {

1914

'conditional_gates': True,

1915

'real_time_feedback': True,

1916

'adaptive_measurements': True

1917

}

1918

1919

return {

1920

'status': 'enabled',

1921

'configuration': control_config,

1922

'supported_devices': ['IQM Adonis', 'IQM Apollo']

1923

}

1924

except Exception as e:

1925

return {

1926

'status': 'unavailable',

1927

'error': str(e),

1928

'reason': 'Experimental feature not available in current environment'

1929

}

1930

1931

experimental_features['usage_examples']['classical_control'] = classical_control_example()

1932

1933

# Advanced error correction

1934

def advanced_error_correction_example():

1935

"""Demonstrate advanced error correction features."""

1936

with EnableExperimentalCapability('advanced_error_correction'):

1937

# Experimental error correction protocols

1938

advanced_qec = {

1939

'surface_codes': {

1940

'supported': True,

1941

'min_qubits': 17, # Smallest surface code

1942

'features': ['arbitrary distance', 'custom boundary conditions']

1943

},

1944

'color_codes': {

1945

'supported': True,

1946

'min_qubits': 15, # Color code triangle

1947

'features': ['higher threshold', 'transversal gates']

1948

},

1949

'topological_codes': {

1950

'supported': False,

1951

'reason': 'Requires specific hardware topology'

1952

}

1953

}

1954

1955

return advanced_qec

1956

1957

experimental_features['usage_examples']['advanced_error_correction'] = advanced_error_correction_example()

1958

1959

return experimental_features

1960

1961

def create_experimental_workflow() -> dict:

1962

"""

1963

Create experimental quantum computing workflow.

1964

1965

Returns:

1966

dict: Experimental workflow configuration

1967

"""

1968

workflow = {

1969

'stages': [

1970

'feature_detection',

1971

'capability_enablement',

1972

'experimental_execution',

1973

'result_validation',

1974

'fallback_handling'

1975

],

1976

'implementation': {}

1977

}

1978

1979

def feature_detection_stage():

1980

"""Detect available experimental features."""

1981

available_features = []

1982

1983

# Check for classical control

1984

try:

1985

with EnableExperimentalCapability('classical_control'):

1986

available_features.append('classical_control')

1987

except:

1988

pass

1989

1990

# Check for advanced error correction

1991

try:

1992

with EnableExperimentalCapability('advanced_error_correction'):

1993

available_features.append('advanced_error_correction')

1994

except:

1995

pass

1996

1997

return {

1998

'detected_features': available_features,

1999

'detection_method': 'capability_probing',

2000

'confidence': 'high' if available_features else 'low'

2001

}

2002

2003

def experimental_execution_stage(circuit, experimental_config: dict):

2004

"""Execute circuit with experimental features."""

2005

execution_plan = {

2006

'base_circuit': circuit,

2007

'experimental_modifications': [],

2008

'fallback_strategy': 'standard_execution'

2009

}

2010

2011

# Apply experimental modifications based on config

2012

if 'classical_control' in experimental_config.get('enabled_features', []):

2013

execution_plan['experimental_modifications'].append({

2014

'type': 'classical_control',

2015

'description': 'Enable conditional gate execution',

2016

'impact': 'Allows adaptive circuit behavior'

2017

})

2018

2019

if 'advanced_error_correction' in experimental_config.get('enabled_features', []):

2020

execution_plan['experimental_modifications'].append({

2021

'type': 'advanced_qec',

2022

'description': 'Apply experimental error correction',

2023

'impact': 'Improved fidelity with overhead'

2024

})

2025

2026

return execution_plan

2027

2028

workflow['implementation'] = {

2029

'feature_detection': feature_detection_stage,

2030

'experimental_execution': experimental_execution_stage

2031

}

2032

2033

return workflow

2034

```

2035

2036

This comprehensive advanced features documentation covers all the sophisticated quantum computing capabilities provided by the Amazon Braket SDK, including analog Hamiltonian simulation, quantum annealing, pulse-level control, error mitigation techniques, circuit emulation infrastructure, and experimental features for cutting-edge quantum computing research and development.