or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

advanced-features.mdaws-integration.mdcircuits.mddevices-simulation.mdindex.mdquantum-information.md

devices-simulation.mddocs/

0

# Device Management and Local Simulation

1

2

Comprehensive device interfaces, local quantum simulation, and emulation capabilities for quantum circuit development and testing.

3

4

## Core Imports

5

6

```python { .api }

7

from braket.devices import Device, Devices, LocalSimulator

8

from braket.emulation import Emulator, PassManager, ValidationPass

9

from braket.tasks import QuantumTask, QuantumTaskBatch

10

from braket.tasks import (

11

GateModelQuantumTaskResult, AnalogHamiltonianSimulationQuantumTaskResult,

12

AnnealingQuantumTaskResult, PhotonicModelQuantumTaskResult, ProgramSetQuantumTaskResult

13

)

14

```

15

16

## Device Interface

17

18

### Abstract Device Base

19

20

```python { .api }

21

from braket.devices import Device

22

from abc import ABC, abstractmethod

23

24

class Device(ABC):

25

"""Abstract base class for quantum devices."""

26

27

@abstractmethod

28

def run(

29

self,

30

task_specification,

31

shots: int = 1000,

32

**kwargs

33

) -> 'QuantumTask':

34

"""

35

Execute quantum task on device.

36

37

Args:

38

task_specification: Circuit, AHS program, or annealing problem

39

shots: Number of measurement shots

40

**kwargs: Additional device-specific parameters

41

42

Returns:

43

QuantumTask: Task execution handle

44

"""

45

pass

46

47

@abstractmethod

48

def run_batch(

49

self,

50

task_specifications: list,

51

shots: int = 1000,

52

max_parallel: int = 10,

53

**kwargs

54

) -> 'QuantumTaskBatch':

55

"""

56

Execute batch of quantum tasks.

57

58

Args:

59

task_specifications: List of task specifications

60

shots: Number of measurement shots per task

61

max_parallel: Maximum parallel executions

62

**kwargs: Additional parameters

63

64

Returns:

65

QuantumTaskBatch: Batch execution handle

66

"""

67

pass

68

69

@property

70

@abstractmethod

71

def name(self) -> str:

72

"""Device name identifier."""

73

pass

74

75

@property

76

@abstractmethod

77

def status(self) -> str:

78

"""Current device status."""

79

pass

80

81

@property

82

@abstractmethod

83

def type(self) -> str:

84

"""Device type identifier."""

85

pass

86

87

@property

88

@abstractmethod

89

def provider_name(self) -> str:

90

"""Device provider name."""

91

pass

92

93

@property

94

@abstractmethod

95

def properties(self) -> dict:

96

"""Device capabilities and properties."""

97

pass

98

99

class Devices:

100

"""Device enumeration utility."""

101

102

@staticmethod

103

def get_all() -> list[Device]:

104

"""

105

Get all available devices.

106

107

Returns:

108

list[Device]: All available quantum devices

109

"""

110

pass

111

112

@staticmethod

113

def get_by_type(device_type: str) -> list[Device]:

114

"""

115

Get devices by type.

116

117

Args:

118

device_type: Device type filter

119

120

Returns:

121

list[Device]: Devices matching type

122

"""

123

pass

124

125

@staticmethod

126

def get_by_provider(provider: str) -> list[Device]:

127

"""

128

Get devices by provider.

129

130

Args:

131

provider: Provider name filter

132

133

Returns:

134

list[Device]: Devices from provider

135

"""

136

pass

137

```

138

139

## Local Quantum Simulation

140

141

### LocalSimulator Implementation

142

143

```python { .api }

144

from braket.devices import LocalSimulator

145

import numpy as np

146

147

class LocalSimulator(Device):

148

"""Local quantum circuit simulator."""

149

150

def __init__(

151

self,

152

backend: str = "braket_sv",

153

max_shots: int = 100000,

154

seed: int = None

155

):

156

"""

157

Initialize local simulator.

158

159

Args:

160

backend: Simulation backend ('braket_sv', 'braket_dm', 'braket_ahs')

161

max_shots: Maximum number of shots per execution

162

seed: Random seed for reproducible results

163

"""

164

self.backend = backend

165

self.max_shots = max_shots

166

self.seed = seed

167

168

def run(

169

self,

170

task_specification,

171

shots: int = 1000,

172

inputs: dict = None,

173

**kwargs

174

) -> 'LocalQuantumTask':

175

"""

176

Execute circuit on local simulator.

177

178

Args:

179

task_specification: Quantum circuit to execute

180

shots: Number of measurement shots

181

inputs: Parameter inputs for parameterized circuits

182

**kwargs: Additional simulation parameters

183

184

Returns:

185

LocalQuantumTask: Local task execution

186

"""

187

pass

188

189

def run_batch(

190

self,

191

task_specifications: list,

192

shots: int = 1000,

193

max_parallel: int = None,

194

inputs: list[dict] = None,

195

**kwargs

196

) -> 'LocalQuantumTaskBatch':

197

"""

198

Execute batch of circuits locally.

199

200

Args:

201

task_specifications: List of quantum circuits

202

shots: Number of shots per circuit

203

max_parallel: Parallel execution limit (uses CPU cores)

204

inputs: Parameter inputs for each circuit

205

**kwargs: Additional parameters

206

207

Returns:

208

LocalQuantumTaskBatch: Batch execution handle

209

"""

210

pass

211

212

@property

213

def name(self) -> str:

214

"""Simulator name."""

215

return f"LocalSimulator({self.backend})"

216

217

@property

218

def status(self) -> str:

219

"""Simulator status (always ONLINE for local)."""

220

return "ONLINE"

221

222

@property

223

def type(self) -> str:

224

"""Device type."""

225

return "SIMULATOR"

226

227

@property

228

def provider_name(self) -> str:

229

"""Provider name."""

230

return "Local"

231

232

@property

233

def properties(self) -> dict:

234

"""Simulator capabilities."""

235

return {

236

"backend": self.backend,

237

"max_shots": self.max_shots,

238

"max_qubits": 25 if self.backend == "braket_sv" else 12,

239

"supported_operations": self._get_supported_operations(),

240

"supports_noise": self.backend == "braket_dm"

241

}

242

243

def _get_supported_operations(self) -> list[str]:

244

"""Get list of supported quantum operations."""

245

if self.backend == "braket_sv":

246

return ["H", "X", "Y", "Z", "S", "T", "Rx", "Ry", "Rz", "CNot", "CCNot", "Unitary"]

247

elif self.backend == "braket_dm":

248

return ["H", "X", "Y", "Z", "S", "T", "Rx", "Ry", "Rz", "CNot", "Noise"]

249

else:

250

return []

251

252

# Local simulation examples

253

def simulate_circuit_locally(circuit, shots: int = 1000, backend: str = "braket_sv") -> dict:

254

"""

255

Simulate quantum circuit using local resources.

256

257

Args:

258

circuit: Quantum circuit to simulate

259

shots: Number of measurement shots

260

backend: Local simulation backend

261

262

Returns:

263

dict: Simulation results and performance metrics

264

"""

265

import time

266

267

simulator = LocalSimulator(backend=backend)

268

269

start_time = time.time()

270

task = simulator.run(circuit, shots=shots)

271

result = task.result()

272

end_time = time.time()

273

274

return {

275

'measurement_counts': result.measurement_counts,

276

'measurement_probabilities': result.measurement_probabilities,

277

'execution_time': end_time - start_time,

278

'simulator_info': {

279

'backend': backend,

280

'shots': shots,

281

'qubit_count': circuit.qubit_count,

282

'circuit_depth': circuit.depth

283

}

284

}

285

286

def compare_simulation_backends(circuit) -> dict:

287

"""

288

Compare different local simulation backends.

289

290

Args:

291

circuit: Circuit to simulate across backends

292

293

Returns:

294

dict: Performance comparison across backends

295

"""

296

backends = ["braket_sv", "braket_dm"]

297

comparison = {}

298

299

for backend in backends:

300

try:

301

result = simulate_circuit_locally(circuit, shots=1000, backend=backend)

302

comparison[backend] = {

303

'execution_time': result['execution_time'],

304

'memory_usage': 'Unknown', # Would need profiling

305

'accuracy': 'Exact' if backend == "braket_sv" else 'Approximate',

306

'noise_support': backend == "braket_dm",

307

'results': result['measurement_counts']

308

}

309

except Exception as e:

310

comparison[backend] = {'error': str(e)}

311

312

return comparison

313

314

def optimize_local_simulation(circuit, target_accuracy: float = 0.01) -> dict:

315

"""

316

Optimize local simulation for best performance/accuracy tradeoff.

317

318

Args:

319

circuit: Circuit to optimize simulation for

320

target_accuracy: Target measurement accuracy

321

322

Returns:

323

dict: Optimized simulation configuration

324

"""

325

optimization = {

326

'recommended_backend': 'braket_sv',

327

'recommended_shots': 1000,

328

'expected_time': 0.0,

329

'expected_memory': 0,

330

'rationale': []

331

}

332

333

# Analyze circuit characteristics

334

qubit_count = circuit.qubit_count

335

circuit_depth = circuit.depth

336

has_noise = any(hasattr(inst.operator, 'noise') for inst in circuit.instructions)

337

338

# Backend recommendation

339

if has_noise:

340

optimization['recommended_backend'] = 'braket_dm'

341

optimization['rationale'].append("Circuit contains noise - using density matrix simulator")

342

elif qubit_count > 20:

343

optimization['recommended_backend'] = 'braket_dm'

344

optimization['rationale'].append(f"{qubit_count} qubits - density matrix more memory efficient")

345

else:

346

optimization['recommended_backend'] = 'braket_sv'

347

optimization['rationale'].append("State vector simulator for exact results")

348

349

# Shot count optimization

350

if target_accuracy <= 0.001:

351

optimization['recommended_shots'] = 100000

352

elif target_accuracy <= 0.01:

353

optimization['recommended_shots'] = 10000

354

else:

355

optimization['recommended_shots'] = 1000

356

357

optimization['rationale'].append(f"Shots: {optimization['recommended_shots']} for {target_accuracy} accuracy")

358

359

# Performance estimates

360

if optimization['recommended_backend'] == 'braket_sv':

361

optimization['expected_memory'] = 2 ** (qubit_count + 3) # 8 bytes per amplitude

362

optimization['expected_time'] = circuit_depth * 0.001 * (2 ** qubit_count)

363

else:

364

optimization['expected_memory'] = 2 ** (2 * qubit_count + 4) # Density matrix

365

optimization['expected_time'] = circuit_depth * 0.002 * (2 ** (2 * qubit_count))

366

367

return optimization

368

```

369

370

### Local Task Management

371

372

```python { .api }

373

from braket.tasks import QuantumTask

374

375

class LocalQuantumTask(QuantumTask):

376

"""Local quantum task execution."""

377

378

def __init__(self, task_specification, shots: int, simulator: LocalSimulator):

379

"""

380

Initialize local quantum task.

381

382

Args:

383

task_specification: Circuit or program to execute

384

shots: Number of measurement shots

385

simulator: Local simulator instance

386

"""

387

self.task_specification = task_specification

388

self.shots = shots

389

self.simulator = simulator

390

self._result = None

391

self._state = "CREATED"

392

393

def result(self) -> 'GateModelQuantumTaskResult':

394

"""

395

Get task execution results.

396

397

Returns:

398

GateModelQuantumTaskResult: Task results

399

"""

400

if self._result is None:

401

self._execute()

402

return self._result

403

404

def state(self) -> str:

405

"""

406

Get current task state.

407

408

Returns:

409

str: Task state (CREATED, RUNNING, COMPLETED, FAILED)

410

"""

411

return self._state

412

413

def _execute(self) -> None:

414

"""Execute the quantum task locally."""

415

import time

416

import numpy as np

417

418

self._state = "RUNNING"

419

start_time = time.time()

420

421

try:

422

# Simulate circuit execution

423

if hasattr(self.task_specification, 'instructions'):

424

# Quantum circuit

425

circuit = self.task_specification

426

427

# Basic state vector simulation (simplified)

428

n_qubits = circuit.qubit_count

429

state_vector = np.zeros(2**n_qubits, dtype=complex)

430

state_vector[0] = 1.0 # |00...0⟩ initial state

431

432

# Apply gates (simplified implementation)

433

for instruction in circuit.instructions:

434

gate = instruction.operator

435

targets = instruction.target

436

# Gate application logic would go here

437

438

# Sample measurements

439

probabilities = np.abs(state_vector) ** 2

440

samples = np.random.choice(

441

len(probabilities),

442

size=self.shots,

443

p=probabilities

444

)

445

446

# Count measurements

447

measurement_counts = {}

448

for sample in samples:

449

bitstring = format(sample, f'0{n_qubits}b')

450

measurement_counts[bitstring] = measurement_counts.get(bitstring, 0) + 1

451

452

self._result = GateModelQuantumTaskResult(

453

measurement_counts=measurement_counts,

454

measurement_probabilities={

455

k: v/self.shots for k, v in measurement_counts.items()

456

},

457

task_metadata={

458

'shots': self.shots,

459

'execution_duration': time.time() - start_time,

460

'simulator_backend': self.simulator.backend

461

}

462

)

463

464

self._state = "COMPLETED"

465

466

except Exception as e:

467

self._state = "FAILED"

468

self._result = {'error': str(e)}

469

470

class LocalQuantumTaskBatch:

471

"""Batch execution of local quantum tasks."""

472

473

def __init__(self, tasks: list[LocalQuantumTask]):

474

"""

475

Initialize local task batch.

476

477

Args:

478

tasks: List of local quantum tasks

479

"""

480

self.tasks = tasks

481

482

def results(self) -> list:

483

"""

484

Get results from all tasks in batch.

485

486

Returns:

487

list: Results from all tasks

488

"""

489

return [task.result() for task in self.tasks]

490

491

def unsuccessful(self) -> list[LocalQuantumTask]:

492

"""

493

Get unsuccessful tasks.

494

495

Returns:

496

list[LocalQuantumTask]: Failed tasks

497

"""

498

return [task for task in self.tasks if task.state() == "FAILED"]

499

500

def execute_local_batch_efficiently(circuits: list, shots: int = 1000) -> dict:

501

"""

502

Execute batch of circuits with optimal local resource utilization.

503

504

Args:

505

circuits: List of quantum circuits

506

shots: Number of shots per circuit

507

508

Returns:

509

dict: Batch execution results with performance analytics

510

"""

511

import multiprocessing

512

import time

513

from concurrent.futures import ThreadPoolExecutor

514

515

simulator = LocalSimulator()

516

start_time = time.time()

517

518

# Determine optimal parallelization

519

cpu_count = multiprocessing.cpu_count()

520

max_parallel = min(len(circuits), cpu_count)

521

522

batch_results = {

523

'results': [],

524

'execution_stats': {

525

'total_circuits': len(circuits),

526

'parallel_workers': max_parallel,

527

'total_execution_time': 0,

528

'average_time_per_circuit': 0,

529

'throughput_circuits_per_second': 0

530

}

531

}

532

533

# Execute circuits in parallel

534

with ThreadPoolExecutor(max_workers=max_parallel) as executor:

535

tasks = [

536

executor.submit(simulator.run, circuit, shots)

537

for circuit in circuits

538

]

539

540

for i, task in enumerate(tasks):

541

result = task.result().result()

542

batch_results['results'].append({

543

'circuit_index': i,

544

'measurement_counts': result.measurement_counts,

545

'measurement_probabilities': result.measurement_probabilities

546

})

547

548

# Calculate performance statistics

549

end_time = time.time()

550

total_time = end_time - start_time

551

552

batch_results['execution_stats']['total_execution_time'] = total_time

553

batch_results['execution_stats']['average_time_per_circuit'] = total_time / len(circuits)

554

batch_results['execution_stats']['throughput_circuits_per_second'] = len(circuits) / total_time

555

556

return batch_results

557

```

558

559

## Quantum Circuit Emulation

560

561

### Emulator Infrastructure

562

563

```python { .api }

564

from braket.emulation import Emulator, PassManager, ValidationPass

565

566

class Emulator:

567

"""Quantum circuit emulator with compilation passes."""

568

569

def __init__(

570

self,

571

pass_manager: PassManager = None,

572

target_device: Device = None

573

):

574

"""

575

Initialize quantum circuit emulator.

576

577

Args:

578

pass_manager: Compilation pass manager

579

target_device: Target device for emulation properties

580

"""

581

self.pass_manager = pass_manager or PassManager()

582

self.target_device = target_device

583

584

def emulate(

585

self,

586

circuit,

587

shots: int = 1000,

588

inputs: dict = None

589

) -> 'EmulationResult':

590

"""

591

Emulate quantum circuit with compilation.

592

593

Args:

594

circuit: Quantum circuit to emulate

595

shots: Number of measurement shots

596

inputs: Input parameters for parameterized circuits

597

598

Returns:

599

EmulationResult: Emulation results with compilation info

600

"""

601

pass

602

603

def add_pass(self, pass_instance) -> 'Emulator':

604

"""

605

Add compilation pass to emulator.

606

607

Args:

608

pass_instance: Compilation pass to add

609

610

Returns:

611

Emulator: Self for method chaining

612

"""

613

self.pass_manager.add_pass(pass_instance)

614

return self

615

616

class PassManager:

617

"""Compilation pass management for quantum circuits."""

618

619

def __init__(self):

620

"""Initialize empty pass manager."""

621

self.passes = []

622

623

def add_pass(self, pass_instance) -> 'PassManager':

624

"""

625

Add compilation pass.

626

627

Args:

628

pass_instance: Pass to add

629

630

Returns:

631

PassManager: Self for method chaining

632

"""

633

self.passes.append(pass_instance)

634

return self

635

636

def run(self, circuit) -> 'Circuit':

637

"""

638

Run all passes on circuit.

639

640

Args:

641

circuit: Input quantum circuit

642

643

Returns:

644

Circuit: Compiled quantum circuit

645

"""

646

compiled_circuit = circuit

647

for pass_instance in self.passes:

648

compiled_circuit = pass_instance.run(compiled_circuit)

649

return compiled_circuit

650

651

class ValidationPass:

652

"""Circuit validation compilation pass."""

653

654

def __init__(self, target_device: Device = None):

655

"""

656

Initialize validation pass.

657

658

Args:

659

target_device: Target device for validation

660

"""

661

self.target_device = target_device

662

663

def run(self, circuit) -> 'Circuit':

664

"""

665

Validate circuit against device constraints.

666

667

Args:

668

circuit: Circuit to validate

669

670

Returns:

671

Circuit: Validated circuit (may raise ValidationError)

672

"""

673

pass

674

675

# Emulation examples

676

def create_realistic_emulator(target_device_properties: dict) -> Emulator:

677

"""

678

Create emulator that mimics real device behavior.

679

680

Args:

681

target_device_properties: Properties of target quantum device

682

683

Returns:

684

Emulator: Configured emulator with realistic behavior

685

"""

686

pass_manager = PassManager()

687

688

# Add validation pass for device constraints

689

validation_pass = ValidationPass()

690

pass_manager.add_pass(validation_pass)

691

692

# Add device-specific compilation passes

693

if 'connectivity' in target_device_properties:

694

# Add SWAP insertion pass for limited connectivity

695

# swap_pass = SwapInsertionPass(target_device_properties['connectivity'])

696

# pass_manager.add_pass(swap_pass)

697

pass

698

699

if 'native_gates' in target_device_properties:

700

# Add gate decomposition pass

701

# decomposition_pass = GateDecompositionPass(target_device_properties['native_gates'])

702

# pass_manager.add_pass(decomposition_pass)

703

pass

704

705

emulator = Emulator(pass_manager=pass_manager)

706

return emulator

707

708

def benchmark_emulation_vs_simulation(circuit) -> dict:

709

"""

710

Benchmark emulation vs direct simulation performance.

711

712

Args:

713

circuit: Circuit to benchmark

714

715

Returns:

716

dict: Performance comparison results

717

"""

718

import time

719

720

benchmark_results = {

721

'circuit_info': {

722

'qubit_count': circuit.qubit_count,

723

'depth': circuit.depth,

724

'gate_count': len(circuit.instructions)

725

},

726

'simulation': {},

727

'emulation': {}

728

}

729

730

# Direct simulation

731

simulator = LocalSimulator()

732

start_time = time.time()

733

sim_task = simulator.run(circuit, shots=1000)

734

sim_result = sim_task.result()

735

sim_time = time.time() - start_time

736

737

benchmark_results['simulation'] = {

738

'execution_time': sim_time,

739

'compilation_time': 0,

740

'result_counts': sim_result.measurement_counts

741

}

742

743

# Emulation with compilation

744

emulator = Emulator()

745

start_time = time.time()

746

compile_start = time.time()

747

compiled_circuit = emulator.pass_manager.run(circuit)

748

compile_time = time.time() - compile_start

749

750

emu_result = emulator.emulate(compiled_circuit, shots=1000)

751

total_emu_time = time.time() - start_time

752

753

benchmark_results['emulation'] = {

754

'execution_time': total_emu_time,

755

'compilation_time': compile_time,

756

'optimizations_applied': len(emulator.pass_manager.passes),

757

'compiled_circuit_depth': compiled_circuit.depth

758

}

759

760

# Performance analysis

761

benchmark_results['analysis'] = {

762

'speedup_factor': sim_time / total_emu_time if total_emu_time > 0 else float('inf'),

763

'compilation_overhead': compile_time / total_emu_time if total_emu_time > 0 else 0,

764

'depth_reduction': (circuit.depth - compiled_circuit.depth) / circuit.depth if circuit.depth > 0 else 0

765

}

766

767

return benchmark_results

768

```

769

770

## Task Result Types

771

772

### Result Type Classes

773

774

```python { .api }

775

from braket.tasks import (

776

GateModelQuantumTaskResult, AnalogHamiltonianSimulationQuantumTaskResult,

777

AnnealingQuantumTaskResult, PhotonicModelQuantumTaskResult, ProgramSetQuantumTaskResult

778

)

779

780

class GateModelQuantumTaskResult:

781

"""Results from gate-model quantum circuit execution."""

782

783

def __init__(

784

self,

785

measurement_counts: dict = None,

786

measurement_probabilities: dict = None,

787

values: list = None,

788

measured_qubits: list = None,

789

task_metadata: dict = None

790

):

791

"""

792

Initialize gate model task result.

793

794

Args:

795

measurement_counts: Raw measurement count data

796

measurement_probabilities: Measurement probabilities

797

values: Observable expectation values

798

measured_qubits: List of measured qubit indices

799

task_metadata: Task execution metadata

800

"""

801

self.measurement_counts = measurement_counts or {}

802

self.measurement_probabilities = measurement_probabilities or {}

803

self.values = values or []

804

self.measured_qubits = measured_qubits or []

805

self.task_metadata = task_metadata or {}

806

807

def get_counts(self) -> dict:

808

"""

809

Get measurement counts.

810

811

Returns:

812

dict: Measurement counts by bitstring

813

"""

814

return self.measurement_counts

815

816

def get_probabilities(self) -> dict:

817

"""

818

Get measurement probabilities.

819

820

Returns:

821

dict: Measurement probabilities by bitstring

822

"""

823

return self.measurement_probabilities

824

825

class AnalogHamiltonianSimulationQuantumTaskResult:

826

"""Results from analog Hamiltonian simulation tasks."""

827

828

def __init__(

829

self,

830

pre_sequence: list = None,

831

post_sequence: list = None,

832

task_metadata: dict = None

833

):

834

"""

835

Initialize AHS task result.

836

837

Args:

838

pre_sequence: Pre-evolution measurements

839

post_sequence: Post-evolution measurements

840

task_metadata: Task execution metadata

841

"""

842

self.pre_sequence = pre_sequence or []

843

self.post_sequence = post_sequence or []

844

self.task_metadata = task_metadata or {}

845

846

class AnnealingQuantumTaskResult:

847

"""Results from quantum annealing tasks."""

848

849

def __init__(

850

self,

851

record_array: list = None,

852

variable_count: int = 0,

853

task_metadata: dict = None

854

):

855

"""

856

Initialize annealing task result.

857

858

Args:

859

record_array: Annealing solution records

860

variable_count: Number of problem variables

861

task_metadata: Task execution metadata

862

"""

863

self.record_array = record_array or []

864

self.variable_count = variable_count

865

self.task_metadata = task_metadata or {}

866

867

class PhotonicModelQuantumTaskResult:

868

"""Results from photonic quantum computing tasks."""

869

870

def __init__(

871

self,

872

measurements: list = None,

873

task_metadata: dict = None

874

):

875

"""

876

Initialize photonic task result.

877

878

Args:

879

measurements: Photonic measurement data

880

task_metadata: Task execution metadata

881

"""

882

self.measurements = measurements or []

883

self.task_metadata = task_metadata or {}

884

885

class ProgramSetQuantumTaskResult:

886

"""Results from program set execution tasks."""

887

888

def __init__(

889

self,

890

results: list = None,

891

task_metadata: dict = None

892

):

893

"""

894

Initialize program set task result.

895

896

Args:

897

results: List of individual program results

898

task_metadata: Task execution metadata

899

"""

900

self.results = results or []

901

self.task_metadata = task_metadata or {}

902

903

def get_result(self, index: int):

904

"""

905

Get result for specific program in set.

906

907

Args:

908

index: Program index in set

909

910

Returns:

911

Individual program result

912

"""

913

if 0 <= index < len(self.results):

914

return self.results[index]

915

raise IndexError(f"Program index {index} out of range")

916

917

def get_all_results(self) -> list:

918

"""

919

Get all program results.

920

921

Returns:

922

list: All program execution results

923

"""

924

return self.results

925

926

def analyze_task_results(result) -> dict:

927

"""

928

Analyze quantum task results for insights.

929

930

Args:

931

result: Quantum task result object

932

933

Returns:

934

dict: Comprehensive result analysis

935

"""

936

analysis = {

937

'result_type': type(result).__name__,

938

'execution_info': result.task_metadata,

939

'statistics': {}

940

}

941

942

if isinstance(result, GateModelQuantumTaskResult):

943

# Gate model analysis

944

counts = result.get_counts()

945

total_shots = sum(counts.values())

946

947

analysis['statistics'] = {

948

'total_shots': total_shots,

949

'unique_outcomes': len(counts),

950

'most_probable': max(counts.items(), key=lambda x: x[1]),

951

'entropy': calculate_shannon_entropy(counts),

952

'uniformity': len(counts) / (2 ** len(list(counts.keys())[0]))

953

}

954

955

elif isinstance(result, AnnealingQuantumTaskResult):

956

# Annealing analysis

957

analysis['statistics'] = {

958

'solution_count': len(result.record_array),

959

'variable_count': result.variable_count,

960

'unique_solutions': len(set(tuple(record) for record in result.record_array))

961

}

962

963

elif isinstance(result, ProgramSetQuantumTaskResult):

964

# Program set analysis

965

analysis['statistics'] = {

966

'program_count': len(result.results),

967

'total_executions': len(result.results),

968

'batch_execution': True,

969

'individual_results_available': True

970

}

971

972

return analysis

973

974

def calculate_shannon_entropy(counts: dict) -> float:

975

"""

976

Calculate Shannon entropy of measurement distribution.

977

978

Args:

979

counts: Measurement counts dictionary

980

981

Returns:

982

float: Shannon entropy in bits

983

"""

984

import math

985

986

total_counts = sum(counts.values())

987

if total_counts == 0:

988

return 0.0

989

990

entropy = 0.0

991

for count in counts.values():

992

if count > 0:

993

prob = count / total_counts

994

entropy -= prob * math.log2(prob)

995

996

return entropy

997

```

998

999

## Performance Optimization

1000

1001

### Simulation Optimization Strategies

1002

1003

```python { .api }

1004

def optimize_simulation_performance(circuits: list) -> dict:

1005

"""

1006

Optimize quantum simulation performance for circuit collection.

1007

1008

Args:

1009

circuits: List of quantum circuits to optimize

1010

1011

Returns:

1012

dict: Optimization recommendations and performance estimates

1013

"""

1014

optimization_report = {

1015

'circuit_analysis': [],

1016

'recommendations': [],

1017

'performance_estimates': {},

1018

'resource_requirements': {}

1019

}

1020

1021

total_qubits = 0

1022

max_qubits = 0

1023

total_depth = 0

1024

1025

for i, circuit in enumerate(circuits):

1026

circuit_info = {

1027

'index': i,

1028

'qubit_count': circuit.qubit_count,

1029

'depth': circuit.depth,

1030

'gate_count': len(circuit.instructions),

1031

'recommended_backend': 'braket_sv'

1032

}

1033

1034

# Analyze circuit characteristics

1035

if circuit.qubit_count > 15:

1036

circuit_info['recommended_backend'] = 'braket_dm'

1037

optimization_report['recommendations'].append(

1038

f"Circuit {i}: Use density matrix simulator for {circuit.qubit_count} qubits"

1039

)

1040

1041

# Check for noise

1042

has_noise = any(hasattr(inst.operator, 'noise') for inst in circuit.instructions)

1043

if has_noise:

1044

circuit_info['recommended_backend'] = 'braket_dm'

1045

optimization_report['recommendations'].append(

1046

f"Circuit {i}: Noise detected, using density matrix simulator"

1047

)

1048

1049

optimization_report['circuit_analysis'].append(circuit_info)

1050

1051

total_qubits += circuit.qubit_count

1052

max_qubits = max(max_qubits, circuit.qubit_count)

1053

total_depth += circuit.depth

1054

1055

# Resource requirement estimates

1056

optimization_report['resource_requirements'] = {

1057

'max_memory_gb': estimate_memory_requirements(max_qubits, 'braket_sv'),

1058

'estimated_total_time_seconds': estimate_execution_time(circuits),

1059

'recommended_parallel_jobs': min(len(circuits), 8),

1060

'storage_requirements_mb': estimate_storage_requirements(circuits)

1061

}

1062

1063

# Performance optimization recommendations

1064

optimization_report['recommendations'].extend([

1065

"Use parallel execution for independent circuits",

1066

"Consider circuit compression for repeated patterns",

1067

"Implement result caching for identical circuits",

1068

f"Batch similar circuits (max {max_qubits} qubits detected)"

1069

])

1070

1071

return optimization_report

1072

1073

def estimate_memory_requirements(qubit_count: int, backend: str) -> float:

1074

"""

1075

Estimate memory requirements for quantum simulation.

1076

1077

Args:

1078

qubit_count: Number of qubits in circuit

1079

backend: Simulation backend

1080

1081

Returns:

1082

float: Estimated memory requirement in GB

1083

"""

1084

if backend == 'braket_sv':

1085

# State vector: 2^n complex numbers, 16 bytes each

1086

return (2 ** qubit_count) * 16 / (1024 ** 3)

1087

elif backend == 'braket_dm':

1088

# Density matrix: 2^(2n) complex numbers, 16 bytes each

1089

return (2 ** (2 * qubit_count)) * 16 / (1024 ** 3)

1090

else:

1091

return 0.1 # Default estimate

1092

1093

def estimate_execution_time(circuits: list) -> float:

1094

"""

1095

Estimate total execution time for circuit collection.

1096

1097

Args:

1098

circuits: List of circuits to analyze

1099

1100

Returns:

1101

float: Estimated execution time in seconds

1102

"""

1103

total_time = 0.0

1104

1105

for circuit in circuits:

1106

# Time estimation based on circuit complexity

1107

qubit_factor = 2 ** min(circuit.qubit_count, 20)

1108

depth_factor = circuit.depth

1109

gate_factor = len(circuit.instructions)

1110

1111

# Empirical formula (would need benchmarking to calibrate)

1112

circuit_time = (qubit_factor * depth_factor * 0.001) + (gate_factor * 0.0001)

1113

total_time += circuit_time

1114

1115

return total_time

1116

1117

def estimate_storage_requirements(circuits: list) -> float:

1118

"""

1119

Estimate storage requirements for simulation results.

1120

1121

Args:

1122

circuits: List of circuits

1123

1124

Returns:

1125

float: Estimated storage in MB

1126

"""

1127

storage_mb = 0.0

1128

1129

for circuit in circuits:

1130

# Estimate result size based on measurement outcomes

1131

max_outcomes = 2 ** circuit.qubit_count

1132

# Assume JSON storage with reasonable overhead

1133

circuit_storage = max_outcomes * 50 / 1024 / 1024 # 50 bytes per outcome

1134

storage_mb += circuit_storage

1135

1136

return storage_mb

1137

1138

def create_performance_optimized_simulator(circuit_characteristics: dict) -> LocalSimulator:

1139

"""

1140

Create optimally configured simulator based on circuit characteristics.

1141

1142

Args:

1143

circuit_characteristics: Analysis of circuits to be executed

1144

1145

Returns:

1146

LocalSimulator: Optimally configured simulator

1147

"""

1148

max_qubits = circuit_characteristics.get('max_qubits', 10)

1149

has_noise = circuit_characteristics.get('has_noise', False)

1150

total_circuits = circuit_characteristics.get('circuit_count', 1)

1151

1152

# Select optimal backend

1153

if has_noise:

1154

backend = 'braket_dm'

1155

elif max_qubits > 18:

1156

backend = 'braket_dm' # Memory efficiency for large systems

1157

else:

1158

backend = 'braket_sv' # Accuracy for smaller systems

1159

1160

# Configure shot limits based on workload

1161

if total_circuits > 100:

1162

max_shots = 10000 # Lower per-circuit limit for large batches

1163

else:

1164

max_shots = 100000 # Higher limit for smaller batches

1165

1166

return LocalSimulator(

1167

backend=backend,

1168

max_shots=max_shots,

1169

seed=42 # Reproducible results

1170

)

1171

```

1172

1173

This comprehensive device management and simulation documentation covers all aspects of quantum device interfaces, local simulation capabilities, emulation infrastructure, and performance optimization strategies provided by the Amazon Braket SDK.