or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

advanced-features.mdaws-integration.mdcircuits.mddevices-simulation.mdindex.mdquantum-information.md

index.mddocs/

0

# Amazon Braket SDK

1

2

An open source library for interacting with quantum computing devices on Amazon Braket.

3

4

The Amazon Braket SDK provides a comprehensive Python interface for quantum computing, offering support for quantum circuits, AWS quantum devices, local simulation, analog Hamiltonian simulation, quantum annealing, and advanced features like pulse control and error mitigation.

5

6

## Package Information

7

8

- **Package Name**: amazon-braket-sdk

9

- **Package Type**: pypi

10

- **Language**: Python

11

- **Installation**: `pip install amazon-braket-sdk`

12

- **Version**: 1.101.0

13

- **License**: Apache License 2.0

14

- **Python Support**: 3.10, 3.11, 3.12, 3.13

15

- **Architecture**: Namespace package structure

16

17

## Core Imports

18

19

```python { .api }

20

# Core SDK components

21

from braket._sdk import __version__

22

23

# Circuit construction and gates

24

from braket.circuits import Circuit, Gate, AngledGate, DoubleAngledGate

25

from braket.circuits.gates import H, CNot, Rx, Ry, Rz, X, Y, Z

26

from braket.circuits.observables import X as ObsX, Y as ObsY, Z as ObsZ, TensorProduct

27

from braket.circuits.result_types import StateVector, Expectation, Sample, Probability

28

29

# AWS integration

30

from braket.aws import AwsDevice, AwsQuantumTask, AwsSession, AwsDeviceType

31

32

# Local simulation

33

from braket.devices import LocalSimulator

34

35

# Quantum information utilities

36

from braket.quantum_information import PauliString

37

38

# Job management

39

from braket.jobs import hybrid_job

40

41

# Cost tracking

42

from braket.tracking import Tracker

43

44

# Parametric circuits and free parameters

45

from braket.circuits import FreeParameter, FreeParameterExpression, Parameterizable

46

47

# Program sets and parameter binding

48

from braket.program_sets import ProgramSet, ParameterSets, CircuitBinding

49

50

# Registers and qubit management

51

from braket.circuits import Qubit, QubitInput, QubitSet, QubitSetInput

52

53

# Circuit emulation and compilation

54

from braket.emulation import PassManager

55

56

# Timing data structures

57

from braket.timings import TimeSeries, TimeSeriesItem

58

```

59

60

## Basic Usage Example

61

62

```python { .api }

63

from braket.circuits import Circuit

64

from braket.circuits.gates import H, CNot

65

from braket.devices import LocalSimulator

66

from braket.aws import AwsDevice

67

68

# Create a Bell state circuit

69

def create_bell_circuit() -> Circuit:

70

"""

71

Creates a Bell state quantum circuit.

72

73

Returns:

74

Circuit: A quantum circuit that creates a Bell state

75

"""

76

circuit = Circuit()

77

circuit.h(0)

78

circuit.cnot(0, 1)

79

return circuit

80

81

# Run on local simulator

82

def run_local_simulation(circuit: Circuit, shots: int = 1000) -> dict:

83

"""

84

Run circuit on local simulator.

85

86

Args:

87

circuit: The quantum circuit to execute

88

shots: Number of measurement shots

89

90

Returns:

91

dict: Measurement results

92

"""

93

device = LocalSimulator()

94

task = device.run(circuit, shots=shots)

95

return task.result().measurement_counts

96

97

# Run on AWS device

98

def run_aws_device(circuit: Circuit, device_arn: str, shots: int = 1000) -> dict:

99

"""

100

Run circuit on AWS quantum device.

101

102

Args:

103

circuit: The quantum circuit to execute

104

device_arn: AWS device ARN

105

shots: Number of measurement shots

106

107

Returns:

108

dict: Measurement results from AWS task

109

"""

110

device = AwsDevice(device_arn)

111

task = device.run(circuit, shots=shots)

112

return task.result().measurement_counts

113

```

114

115

## Architecture Overview

116

117

The Amazon Braket SDK is organized into 20 major modules:

118

119

### Core Components

120

121

1. **[Circuit Construction](circuits.md)** - Quantum circuits, gates, and measurements

122

2. **[AWS Integration](aws-integration.md)** - Cloud quantum devices and task management

123

3. **[Local Simulation](devices-simulation.md)** - Local quantum simulators and device management

124

4. **[Quantum Information](quantum-information.md)** - Pauli strings, parametric circuits, registers, and quantum utilities

125

126

### Advanced Features

127

128

5. **[Advanced Capabilities](advanced-features.md)** - AHS, annealing, pulse control, error mitigation, emulation, and experimental features

129

130

## Core Capabilities

131

132

### Quantum Circuit Construction

133

134

Build quantum circuits with a comprehensive gate library:

135

136

```python { .api }

137

from braket.circuits import Circuit

138

from braket.circuits.gates import H, CNot, Rx, Ry, Rz, U

139

from braket.circuits.observables import Z, X

140

from braket.circuits.result_types import Expectation

141

import numpy as np

142

143

# Parameterized quantum circuit

144

def variational_circuit(params: list[float]) -> Circuit:

145

"""

146

Creates a parameterized variational quantum circuit.

147

148

Args:

149

params: List of rotation parameters

150

151

Returns:

152

Circuit: Variational quantum circuit

153

"""

154

circuit = Circuit()

155

156

# Layer of Hadamard gates

157

for qubit in range(2):

158

circuit.h(qubit)

159

160

# Parameterized rotation layers

161

for i, param in enumerate(params):

162

qubit = i % 2

163

circuit.ry(qubit, param)

164

165

# Entangling layer

166

circuit.cnot(0, 1)

167

168

# Observable measurement

169

circuit.expectation(observable=Z(0) @ Z(1))

170

171

return circuit

172

```

173

174

### AWS Device Integration

175

176

Connect to quantum processors and simulators on AWS:

177

178

```python { .api }

179

from braket.aws import AwsDevice, AwsDeviceType, AwsSession

180

from braket.circuits import Circuit

181

182

# Device discovery and selection

183

def get_available_devices() -> dict[str, AwsDevice]:

184

"""

185

Get all available AWS Braket devices.

186

187

Returns:

188

dict: Mapping of device names to AwsDevice instances

189

"""

190

# Get QPU devices

191

qpu_devices = AwsDevice.get_devices(device_types=[AwsDeviceType.QPU])

192

193

# Get simulator devices

194

sim_devices = AwsDevice.get_devices(device_types=[AwsDeviceType.SIMULATOR])

195

196

devices = {}

197

for device in qpu_devices + sim_devices:

198

devices[device.name] = device

199

200

return devices

201

202

# Session management

203

def create_aws_session(region: str = "us-east-1") -> AwsSession:

204

"""

205

Create authenticated AWS session for Braket.

206

207

Args:

208

region: AWS region for quantum computing resources

209

210

Returns:

211

AwsSession: Authenticated session

212

"""

213

return AwsSession(boto_session=None, braket_user_agents=None)

214

```

215

216

### Hybrid Quantum Jobs

217

218

Execute hybrid quantum-classical algorithms:

219

220

```python { .api }

221

from braket.jobs import hybrid_job, save_job_result, get_job_device_arn

222

from braket.aws import AwsDevice

223

from braket.circuits import Circuit

224

225

@hybrid_job(device="ml.m5.large")

226

def quantum_optimization_job():

227

"""

228

Hybrid job for quantum optimization algorithm.

229

230

This job runs a variational quantum algorithm combining

231

quantum circuit execution with classical optimization.

232

"""

233

# Get the quantum device for this job

234

device_arn = get_job_device_arn()

235

device = AwsDevice(device_arn)

236

237

# Define cost function using quantum circuits

238

def cost_function(params: list[float]) -> float:

239

circuit = variational_circuit(params)

240

task = device.run(circuit, shots=1000)

241

result = task.result()

242

return result.values[0] # Expectation value

243

244

# Classical optimization loop

245

import scipy.optimize

246

initial_params = [0.1, 0.2]

247

result = scipy.optimize.minimize(cost_function, initial_params)

248

249

# Save results

250

save_job_result({

251

"optimal_params": result.x.tolist(),

252

"optimal_value": float(result.fun)

253

})

254

```

255

256

### Cost and Resource Tracking

257

258

Monitor quantum computing usage and costs:

259

260

```python { .api }

261

from braket.tracking import Tracker

262

from braket.aws import AwsDevice

263

from braket.circuits import Circuit

264

265

def tracked_quantum_execution(circuit: Circuit, device_arn: str) -> dict:

266

"""

267

Execute quantum circuit with cost tracking.

268

269

Args:

270

circuit: Quantum circuit to execute

271

device_arn: AWS device ARN

272

273

Returns:

274

dict: Results including cost information

275

"""

276

with Tracker() as tracker:

277

# Execute quantum task

278

device = AwsDevice(device_arn)

279

task = device.run(circuit, shots=1000)

280

result = task.result()

281

282

# Get cost information

283

cost_info = {

284

"quantum_tasks_cost": tracker.quantum_tasks_cost(),

285

"simulator_tasks_cost": tracker.simulator_tasks_cost(),

286

"total_cost": tracker.quantum_tasks_cost() + tracker.simulator_tasks_cost()

287

}

288

289

return {

290

"measurement_counts": result.measurement_counts,

291

"cost_tracking": cost_info

292

}

293

```

294

295

## Key Features

296

297

- **Complete Gate Library**: 50+ quantum gates including parameterized gates, multi-qubit gates, and custom unitary operations

298

- **Multiple Quantum Computing Paradigms**: Gate model circuits, analog Hamiltonian simulation, quantum annealing, and photonic quantum computing

299

- **AWS Cloud Integration**: Access to real quantum processors from IonQ, Rigetti, IBM, and AWS simulators

300

- **Local Development**: High-performance local quantum simulators for circuit development and testing

301

- **Hybrid Algorithms**: Seamless integration of quantum and classical computing for optimization and machine learning

302

- **Production Features**: Cost tracking, job management, error mitigation, and experimental capabilities

303

- **Pulse-Level Control**: Direct pulse sequence programming for supported quantum devices

304

- **Noise Modeling**: Comprehensive noise models for realistic quantum circuit simulation

305

306

## Documentation Structure

307

308

This documentation is organized into focused capability areas:

309

310

- **[circuits.md](circuits.md)** - Circuit construction, quantum gates, observables, noise models, and result types

311

- **[aws-integration.md](aws-integration.md)** - AWS devices, quantum tasks, sessions, jobs, and cost tracking

312

- **[devices-simulation.md](devices-simulation.md)** - Device management, local simulators, and emulation capabilities

313

- **[quantum-information.md](quantum-information.md)** - Pauli strings, quantum information utilities, and mathematical tools

314

- **[advanced-features.md](advanced-features.md)** - Analog Hamiltonian simulation, quantum annealing, pulse control, and error mitigation

315

316

Each documentation section provides complete API coverage with type definitions, usage patterns, and practical examples for AI agent consumption.