or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

tessl/pypi-keras-hub

Pretrained models for Keras with multi-framework compatibility.

Workspace
tessl
Visibility
Public
Created
Last updated
Describes
pypipkg:pypi/keras-hub@0.22.x

To install, run

npx @tessl/cli install tessl/pypi-keras-hub@0.22.0

0

# Keras Hub

1

2

Keras Hub is a comprehensive pretrained modeling library providing Keras 3 implementations of popular model architectures for text, image, and audio data. It offers state-of-the-art models including BERT, ResNet, BART, BLOOM, DeBERTa, DistilBERT, GPT-2, Llama, Mistral, OPT, RoBERTa, Whisper, and XLM-RoBERTa with pretrained checkpoints available on Kaggle Models. The library supports multi-framework compatibility with JAX, TensorFlow, and PyTorch backends and enables fine-tuning on GPUs and TPUs with built-in PEFT techniques.

3

4

## Package Information

5

6

- **Package Name**: keras-hub

7

- **Language**: Python

8

- **Installation**: `pip install keras-hub` (for NLP models: `pip install keras-hub[nlp]`)

9

- **License**: Apache-2.0

10

- **Documentation**: https://keras.io/keras_hub/

11

12

## Core Imports

13

14

```python

15

import keras_hub

16

```

17

18

Common pattern for specific components:

19

20

```python

21

# Models - most commonly loaded with from_preset()

22

from keras_hub.models import BertTextClassifier, GPT2CausalLM

23

from keras_hub.models import ImageClassifier

24

25

# Tokenizers

26

from keras_hub.tokenizers import BertTokenizer

27

28

# Layers

29

from keras_hub.layers import TransformerEncoder

30

31

# Metrics

32

from keras_hub.metrics import Bleu

33

34

# Utils

35

from keras_hub.utils import upload_preset

36

```

37

38

## Basic Usage

39

40

```python

41

import keras_hub

42

43

# Load a pretrained model for text classification

44

classifier = keras_hub.models.BertTextClassifier.from_preset("bert_base_en")

45

46

# Classify text

47

result = classifier.predict(["This is a great movie!", "I didn't like this film."])

48

print(result)

49

50

# Load a causal language model for text generation

51

generator = keras_hub.models.GPT2CausalLM.from_preset("gpt2_base_en")

52

53

# Generate text

54

generated = generator.generate("The weather today is", max_length=50)

55

print(generated)

56

57

# Use tokenizers directly

58

tokenizer = keras_hub.tokenizers.BertTokenizer.from_preset("bert_base_en")

59

tokens = tokenizer(["Hello world!", "How are you?"])

60

print(tokens)

61

```

62

63

## Architecture

64

65

Keras Hub is organized around several key architectural patterns:

66

67

- **Backbones**: Core model architectures without task-specific heads (e.g., `BertBackbone`, `GPT2Backbone`)

68

- **Task Models**: Complete models with task-specific heads (e.g., `BertTextClassifier`, `GPT2CausalLM`)

69

- **Preprocessors**: Handle data preprocessing for specific models and tasks

70

- **Tokenizers**: Convert text to tokens for model input

71

- **Layers**: Reusable neural network components for building custom models

72

- **Samplers**: Text generation strategies for controlling output

73

74

The library follows consistent naming patterns: `{Architecture}{Task}` for task models, `{Architecture}Backbone` for backbones, and `{Architecture}{Task}Preprocessor` for preprocessors.

75

76

## Capabilities

77

78

### Text Models

79

80

Complete implementations of transformer models for natural language processing tasks including classification, masked language modeling, causal language modeling, and sequence-to-sequence tasks.

81

82

```python { .api }

83

# Base classes

84

class CausalLM: ...

85

class MaskedLM: ...

86

class Seq2SeqLM: ...

87

class TextClassifier: ...

88

89

# Example architectures

90

class BertTextClassifier: ...

91

class GPT2CausalLM: ...

92

class BartSeq2SeqLM: ...

93

```

94

95

[Text Models](./text-models.md)

96

97

### Image Models

98

99

Vision models for image classification, object detection, and image segmentation tasks with popular architectures like ResNet, Vision Transformer, and EfficientNet.

100

101

```python { .api }

102

# Base classes

103

class ImageClassifier: ...

104

class ObjectDetector: ...

105

class ImageSegmenter: ...

106

107

# Example architectures

108

class ResNetImageClassifier: ...

109

class ViTImageClassifier: ...

110

class RetinaNetObjectDetector: ...

111

```

112

113

[Image Models](./image-models.md)

114

115

### Audio Models

116

117

Audio processing models for speech recognition and audio-to-text conversion.

118

119

```python { .api }

120

class WhisperBackbone: ...

121

class MoonshineAudioToText: ...

122

```

123

124

[Audio Models](./audio-models.md)

125

126

### Multimodal Models

127

128

Models that process multiple modalities like text and images together for advanced AI capabilities.

129

130

```python { .api }

131

class CLIPBackbone: ...

132

class PaliGemmaCausalLM: ...

133

class SigLIPBackbone: ...

134

```

135

136

[Multimodal Models](./multimodal-models.md)

137

138

### Generative Models

139

140

Advanced generative models for text-to-image synthesis and image manipulation.

141

142

```python { .api }

143

class StableDiffusion3TextToImage: ...

144

class FluxTextToImage: ...

145

class StableDiffusion3Inpaint: ...

146

```

147

148

[Generative Models](./generative-models.md)

149

150

### Tokenizers

151

152

Text tokenization utilities supporting various algorithms including byte-pair encoding, WordPiece, and SentencePiece.

153

154

```python { .api }

155

class Tokenizer: ...

156

class BytePairTokenizer: ...

157

class WordPieceTokenizer: ...

158

class SentencePieceTokenizer: ...

159

```

160

161

[Tokenizers](./tokenizers.md)

162

163

### Layers and Components

164

165

Reusable neural network layers and components for building custom models or extending existing architectures.

166

167

```python { .api }

168

class TransformerEncoder: ...

169

class TransformerDecoder: ...

170

class CachedMultiHeadAttention: ...

171

class PositionEmbedding: ...

172

```

173

174

[Layers and Components](./layers-components.md)

175

176

### Text Generation Sampling

177

178

Sampling strategies for controlling text generation behavior in language models.

179

180

```python { .api }

181

class Sampler: ...

182

class GreedySampler: ...

183

class TopKSampler: ...

184

class BeamSampler: ...

185

```

186

187

[Text Generation Sampling](./text-generation-sampling.md)

188

189

### Evaluation Metrics

190

191

Metrics for evaluating model performance on various tasks including text generation and classification.

192

193

```python { .api }

194

class Bleu: ...

195

class RougeL: ...

196

class Perplexity: ...

197

```

198

199

[Evaluation Metrics](./evaluation-metrics.md)

200

201

### Utilities and Helpers

202

203

Utility functions for dataset processing, model hub integration, and common operations.

204

205

```python { .api }

206

def upload_preset(uri: str, preset: str) -> None: ...

207

def imagenet_id_to_name(class_id: int) -> str: ...

208

def coco_id_to_name(class_id: int) -> str: ...

209

```

210

211

[Utilities and Helpers](./utilities-helpers.md)

212

213

## Version Information

214

215

```python { .api }

216

__version__: str = "0.22.1"

217

218

def version() -> str:

219

"""Return the current version string."""

220

...

221

```