Fundamental package for array computing in Python
npx @tessl/cli install tessl/pypi-numpy@2.3.0The fundamental package for scientific computing with Python. NumPy provides a powerful N-dimensional array object, sophisticated broadcasting functions, tools for integrating C/C++ and Fortran code, and linear algebra, Fourier transform, and random number capabilities. It serves as the foundation for the entire Python scientific computing ecosystem.
pip install numpyimport numpy as npFor specific submodules:
import numpy.linalg as la
import numpy.random as rng
import numpy.fft as fftimport numpy as np
# Create arrays
arr = np.array([1, 2, 3, 4, 5])
matrix = np.array([[1, 2], [3, 4]])
# Array creation
zeros = np.zeros((3, 4))
ones = np.ones((2, 3))
range_arr = np.arange(0, 10, 2)
linspace_arr = np.linspace(0, 1, 5)
# Mathematical operations
result = np.sqrt(arr)
sum_result = np.sum(matrix, axis=0)
mean_result = np.mean(arr)
# Array manipulation
reshaped = matrix.reshape(4, 1)
transposed = matrix.TNumPy's architecture provides the foundation for scientific computing in Python:
This design enables high-performance numerical computing while maintaining Python's ease of use, serving as the base layer for libraries like pandas, scikit-learn, matplotlib, and the entire scientific Python ecosystem.
Core functionality for creating, reshaping, joining, and manipulating N-dimensional arrays. Includes array creation functions, shape manipulation, joining/splitting operations, and element access patterns.
def array(object, dtype=None, **kwargs): ...
def zeros(shape, dtype=float, **kwargs): ...
def ones(shape, dtype=None, **kwargs): ...
def empty(shape, dtype=float, **kwargs): ...
def arange(start, stop=None, step=1, dtype=None): ...
def linspace(start, stop, num=50, **kwargs): ...
def reshape(a, newshape, order='C'): ...
def concatenate(arrays, axis=0, **kwargs): ...Array Creation and Manipulation
Universal functions (ufuncs) providing element-wise mathematical operations including arithmetic, trigonometric, exponential, logarithmic, and bitwise operations with automatic broadcasting.
def add(x1, x2, **kwargs): ...
def multiply(x1, x2, **kwargs): ...
def sin(x, **kwargs): ...
def cos(x, **kwargs): ...
def exp(x, **kwargs): ...
def log(x, **kwargs): ...
def sqrt(x, **kwargs): ...Statistical and reduction operations for analyzing array data, including basic statistics, cumulative operations, and NaN-aware versions of statistical functions.
def sum(a, axis=None, **kwargs): ...
def mean(a, axis=None, **kwargs): ...
def std(a, axis=None, **kwargs): ...
def min(a, axis=None, **kwargs): ...
def max(a, axis=None, **kwargs): ...
def median(a, axis=None, **kwargs): ...
def percentile(a, q, axis=None, **kwargs): ...Core linear algebra functionality including matrix products, decompositions, eigenvalue problems, and solving linear systems through the numpy.linalg module.
def dot(a, b, out=None): ...
def matmul(x1, x2, **kwargs): ...
def linalg.inv(a): ...
def linalg.solve(a, b): ...
def linalg.eig(a): ...
def linalg.svd(a, **kwargs): ...Functions for finding, sorting, and organizing array elements including search operations, sorting algorithms, and set operations for array analysis.
def where(condition, x=None, y=None): ...
def sort(a, axis=-1, **kwargs): ...
def argsort(a, axis=-1, **kwargs): ...
def unique(ar, **kwargs): ...
def searchsorted(a, v, **kwargs): ...Comprehensive random number generation capabilities through numpy.random, including various probability distributions, random sampling, and BitGenerator infrastructure.
def random.random(size=None): ...
def random.randint(low, high=None, size=None): ...
def random.normal(loc=0.0, scale=1.0, size=None): ...
def random.choice(a, size=None, **kwargs): ...
def random.default_rng(seed=None): ...Discrete Fourier Transform operations through numpy.fft for signal processing and frequency domain analysis, including 1D, 2D, and N-D transforms.
def fft.fft(a, n=None, axis=-1, **kwargs): ...
def fft.ifft(a, n=None, axis=-1, **kwargs): ...
def fft.fft2(a, s=None, axes=(-2, -1), **kwargs): ...
def fft.rfft(a, n=None, axis=-1, **kwargs): ...File I/O operations for saving and loading array data in various formats, including binary and text formats with support for compressed files.
def save(file, arr, **kwargs): ...
def load(file, **kwargs): ...
def loadtxt(fname, **kwargs): ...
def savetxt(fname, X, **kwargs): ...NumPy's flexible data type system including scalar types, structured arrays, and type conversion operations for handling diverse data formats.
class dtype: ...
def astype(dtype, **kwargs): ...
def can_cast(from_, to, casting='safe'): ...
class finfo: ...
class iinfo: ...Polynomial classes and functions for working with polynomials of different mathematical bases including power series, Chebyshev, Legendre, Laguerre, and Hermite polynomials.
class Polynomial: ...
class Chebyshev: ...
class Legendre: ...
def poly(seq_of_zeros): ...
def polyval(p, x): ...
def polyfit(x, y, deg): ...Array operations that handle missing or invalid data through masking, providing robust statistical computations on incomplete datasets.
class MaskedArray: ...
def masked_array(data, mask=False, **kwargs): ...
def masked_where(condition, a): ...
def masked_invalid(a): ...# Mathematical constants
pi = 3.141592653589793
e = 2.718281828459045
euler_gamma = 0.5772156649015329
inf = float('inf')
nan = float('nan')
NINF = float('-inf')
PINF = float('inf')
NZERO = -0.0
PZERO = 0.0
newaxis = None
# Version information
__version__: str # NumPy version string
__array_api_version__: str # Array API standard version
# Configuration
def show_config():
"""Display NumPy build configuration information."""class ndarray:
"""N-dimensional array object."""
def __init__(self, shape, dtype=float, **kwargs): ...
def reshape(self, newshape, order='C'): ...
def astype(self, dtype, **kwargs): ...
def sum(self, axis=None, **kwargs): ...
def mean(self, axis=None, **kwargs): ...
def transpose(self, axes=None): ...
@property
def shape: tuple
@property
def dtype: dtype
@property
def size: int
@property
def ndim: int
@property
def T: ndarray
class dtype:
"""Data type object describing array element type."""
def __init__(self, obj, **kwargs): ...
@property
def name: str
@property
def kind: str
@property
def itemsize: int
class ufunc:
"""Universal function object."""
def __call__(self, *args, **kwargs): ...
def reduce(self, a, axis=0, **kwargs): ...
def accumulate(self, a, axis=0, **kwargs): ...
# Scalar types
class generic: ... # Base class for all scalar types
class number(generic): ... # Base class for all number types
class integer(number): ... # Base class for all integer types
class signedinteger(integer): ... # Base class for signed integers
class unsignedinteger(integer): ... # Base class for unsigned integers
class inexact(number): ... # Base class for inexact types
class floating(inexact): ... # Base class for floating types
class complexfloating(inexact): ... # Base class for complex types
class flexible(generic): ... # Base class for flexible types
class character(flexible): ... # Base class for character types
# Integer scalar types
class int8(signedinteger): ...
class int16(signedinteger): ...
class int32(signedinteger): ...
class int64(signedinteger): ...
class uint8(unsignedinteger): ...
class uint16(unsignedinteger): ...
class uint32(unsignedinteger): ...
class uint64(unsignedinteger): ...
# Platform-dependent integer types
class int_(signedinteger): ... # Platform integer (usually int64)
class intc(signedinteger): ... # C int type
class intp(signedinteger): ... # Pointer-sized integer
class uint(unsignedinteger): ... # Platform unsigned integer
class uintc(unsignedinteger): ... # C unsigned int
class uintp(unsignedinteger): ... # Pointer-sized unsigned integer
# Floating point types
class float16(floating): ... # Half precision
class float32(floating): ... # Single precision
class float64(floating): ... # Double precision
class longdouble(floating): ... # Extended precision
# Complex types
class complex64(complexfloating): ... # Single precision complex
class complex128(complexfloating): ... # Double precision complex
class clongdouble(complexfloating): ... # Extended precision complex
# Other types
class bool_(generic): ... # Boolean type
class bytes_(character): ... # Bytes type
class str_(character): ... # Unicode string type
class void(flexible): ... # Void type for structured arrays
class object_(generic): ... # Python object type
# Date/time types
class datetime64(generic): ... # Date and time
class timedelta64(generic): ... # Time differences