0
# SUR Models
1
2
Seemingly unrelated regressions with spatial error and lag structures for simultaneous equation systems with cross-equation correlation.
3
4
## Capabilities
5
6
### Basic SUR Model
7
8
```python { .api }
9
class SUR:
10
def __init__(self, bigy, bigX, df_name=None, sur_constant=True, name_bigy=None,
11
name_bigX=None, name_ds=None, vm=False, latex=False):
12
"""
13
Seemingly unrelated regressions.
14
15
Parameters:
16
- bigy (array): Stacked dependent variables for all equations
17
- bigX (array): Stacked independent variables for all equations
18
- df_name (list): Names for each equation
19
- sur_constant (bool): Include constant terms
20
"""
21
```
22
23
### Spatial SUR Models
24
25
```python { .api }
26
class SURerrorGM:
27
def __init__(self, bigy, bigX, w, df_name=None, sur_constant=True):
28
"""SUR with spatial error structure using GMM estimation."""
29
30
class SURerrorML:
31
def __init__(self, bigy, bigX, w, df_name=None, sur_constant=True):
32
"""SUR with spatial error structure using ML estimation."""
33
34
class SURlagIV:
35
def __init__(self, bigy, bigX, w, df_name=None, sur_constant=True):
36
"""SUR with spatial lag structure using IV estimation."""
37
```