or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

errors.mdindex.mdmanager.mdnotebook.mdprogram.mdsummary.md

index.mddocs/

0

# TensorBoard

1

2

TensorBoard is a suite of web applications for inspecting, analyzing, and understanding machine learning models and training processes. It provides interactive dashboards for monitoring scalar metrics, visualizing computational graphs, exploring high-dimensional embeddings, analyzing histograms and distributions, debugging models, profiling performance, and examining image/audio/text data samples. The platform supports both real-time monitoring during training and post-hoc analysis with a plugin architecture for custom visualization extensions.

3

4

## Package Information

5

6

- **Package Name**: tensorboard

7

- **Language**: Python

8

- **Installation**: `pip install tensorboard`

9

10

## Core Imports

11

12

```python

13

import tensorboard

14

```

15

16

For accessing specific functionality:

17

18

```python

19

from tensorboard import errors, notebook, program, summary

20

```

21

22

Direct access to the main TensorBoard application:

23

24

```python

25

from tensorboard.program import TensorBoard

26

```

27

28

Summary operations (conditionally available, requires TensorFlow):

29

30

```python

31

# Only available if TensorFlow is installed

32

try:

33

from tensorboard.summary.v2 import scalar, histogram, image, audio, text

34

except ImportError:

35

# v2 API not available without TensorFlow

36

pass

37

```

38

39

## Basic Usage

40

41

### Launch TensorBoard Server

42

43

```python

44

from tensorboard.program import TensorBoard

45

46

# Create and configure TensorBoard application

47

tb = TensorBoard()

48

tb.configure(argv=['--logdir', './logs', '--port', '6006'])

49

50

# Launch the server

51

tb.launch()

52

```

53

54

### Summary Writing (TensorFlow Required)

55

56

```python

57

# Summary operations require TensorFlow installation

58

try:

59

from tensorboard.summary.v2 import scalar, histogram, image

60

import numpy as np

61

62

# Write scalar metrics

63

scalar('loss', 0.1, step=1)

64

scalar('accuracy', 0.95, step=1)

65

66

# Write histogram data

67

weights = np.random.normal(0, 1, 1000)

68

histogram('model/weights', weights, step=1)

69

70

# Write image data

71

image_data = np.random.rand(1, 28, 28, 1) # NHWC format

72

image('generated_images', image_data, step=1)

73

except ImportError:

74

print("TensorFlow required for summary operations")

75

```

76

77

### Notebook Integration

78

79

```python

80

import tensorboard.notebook as tb_notebook

81

82

# Launch TensorBoard in notebook (Jupyter/Colab)

83

tb_notebook.start('--logdir ./logs --port 6006')

84

85

# Display the TensorBoard interface

86

tb_notebook.display(port=6006, height=800)

87

```

88

89

## Architecture

90

91

TensorBoard consists of several key components:

92

93

- **Frontend**: Web-based dashboard with plugin architecture for visualizations

94

- **Backend**: HTTP server that reads log data and serves visualization content

95

- **Summary API**: Python API for writing structured data to TensorBoard logs

96

- **Plugin System**: Extensible architecture supporting custom visualization types

97

- **Manager**: Process lifecycle management for running TensorBoard instances

98

99

The plugin system enables specialized visualizations for different data types (scalars, histograms, images, text, etc.) while maintaining a consistent interface for data ingestion and display.

100

101

## Capabilities

102

103

### Error Handling

104

105

Structured exception hierarchy with HTTP-aware error classes for web application error handling and user-facing error messages.

106

107

```python { .api }

108

class PublicError(RuntimeError): ...

109

class InvalidArgumentError(PublicError): ...

110

class NotFoundError(PublicError): ...

111

class UnauthenticatedError(PublicError): ...

112

class PermissionDeniedError(PublicError): ...

113

```

114

115

[Error Handling](./errors.md)

116

117

### Notebook Integration

118

119

Utilities for using TensorBoard in interactive notebook environments including Jupyter notebooks and Google Colab with automatic context detection and display management.

120

121

```python { .api }

122

def start(args_string: str): ...

123

def display(port=None, height=None): ...

124

def list(): ...

125

```

126

127

[Notebook Integration](./notebook.md)

128

129

### Program Interface

130

131

Command-line application interface and server management functionality for launching and configuring TensorBoard instances with customizable plugins and server options.

132

133

```python { .api }

134

class TensorBoard:

135

def __init__(plugins=None, assets_zip_provider=None, server_class=None): ...

136

def configure(**kwargs): ...

137

def main(argv=None): ...

138

def launch(): ...

139

```

140

141

[Program Interface](./program.md)

142

143

### Summary Operations

144

145

TensorBoard's summary module provides access to summary writing infrastructure and re-exports v1/v2 summary APIs (when TensorFlow is available).

146

147

```python { .api }

148

# Core writer classes (always available)

149

class Writer: ...

150

class Output: ...

151

class DirectoryOutput(Output): ...

152

153

# V2 API re-exports (requires TensorFlow)

154

from tensorboard.summary.v2 import * # Conditional import

155

156

# V1 API re-exports (requires TensorFlow)

157

from tensorboard.summary.v1 import * # Conditional import

158

```

159

160

[Summary Operations](./summary.md)

161

162

### Process Management

163

164

Programmatic control over TensorBoard server instances including startup, monitoring, and shutdown with support for instance reuse and process tracking.

165

166

```python { .api }

167

class TensorBoardInfo: ...

168

class StartLaunched: ...

169

class StartReused: ...

170

def start(arguments, timeout=60): ...

171

def get_all(): ...

172

```

173

174

[Process Management](./manager.md)

175

176

## IPython Extension

177

178

```python { .api }

179

def load_ipython_extension(ipython):

180

"""

181

IPython API entry point for loading TensorBoard magic commands.

182

183

Args:

184

ipython: IPython.InteractiveShell instance

185

186

Note: Only intended to be called by the IPython runtime.

187

"""

188

```

189

190

This function enables TensorBoard magic commands in Jupyter notebooks via `%load_ext tensorboard`.

191

192

## Version Information

193

194

```python { .api }

195

__version__: str # Current version string (e.g., "2.20.0")

196

```

197

198

The `__version__` attribute provides access to the currently installed TensorBoard version for compatibility checking and debugging purposes. The version string corresponds to the value in `tensorboard.version.VERSION`.