or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

audio.mdbatch.mdchat-completions.mdcode-interpreter.mdcompletions.mdembeddings.mdendpoints.mdevaluation.mdfiles.mdfine-tuning.mdimages.mdindex.mdmodels.mdrerank.md

embeddings.mddocs/

0

# Embeddings

1

2

Text embedding generation for semantic search, clustering, classification, and similarity analysis. Supports multiple embedding models optimized for different use cases including retrieval, classification, and general-purpose semantic understanding.

3

4

## Capabilities

5

6

### Text Embeddings

7

8

Generate high-dimensional vector representations of text for semantic processing.

9

10

```python { .api }

11

def create(

12

model: str,

13

input: Union[str, List[str]],

14

**kwargs

15

) -> EmbeddingResponse:

16

"""

17

Create embeddings for input text.

18

19

Args:

20

model: Embedding model identifier

21

input: Text string or list of strings to embed

22

23

Returns:

24

EmbeddingResponse with vector embeddings

25

"""

26

```

27

28

### Async Embeddings

29

30

Asynchronous embedding generation for concurrent processing.

31

32

```python { .api }

33

async def create(

34

model: str,

35

input: Union[str, List[str]],

36

**kwargs

37

) -> EmbeddingResponse:

38

"""

39

Asynchronously create text embeddings.

40

41

Returns:

42

EmbeddingResponse with vector embeddings

43

"""

44

```

45

46

## Usage Examples

47

48

### Basic Embedding Generation

49

50

```python

51

from together import Together

52

53

client = Together()

54

55

response = client.embeddings.create(

56

model="togethercomputer/m2-bert-80M-8k-retrieval",

57

input="Machine learning is transforming technology"

58

)

59

60

embedding = response.data[0].embedding

61

print(f"Embedding dimension: {len(embedding)}")

62

print(f"First 5 values: {embedding[:5]}")

63

```

64

65

### Batch Embedding Processing

66

67

```python

68

texts = [

69

"Artificial intelligence and machine learning",

70

"Deep learning neural networks",

71

"Natural language processing",

72

"Computer vision applications",

73

"Reinforcement learning algorithms"

74

]

75

76

response = client.embeddings.create(

77

model="togethercomputer/m2-bert-80M-8k-retrieval",

78

input=texts

79

)

80

81

embeddings = [data.embedding for data in response.data]

82

print(f"Generated {len(embeddings)} embeddings")

83

print(f"Each embedding has {len(embeddings[0])} dimensions")

84

```

85

86

### Semantic Similarity

87

88

```python

89

import numpy as np

90

from sklearn.metrics.pairwise import cosine_similarity

91

92

def calculate_similarity(text1: str, text2: str, model: str) -> float:

93

response = client.embeddings.create(

94

model=model,

95

input=[text1, text2]

96

)

97

98

embeddings = [data.embedding for data in response.data]

99

similarity = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]

100

return similarity

101

102

similarity_score = calculate_similarity(

103

"I love programming in Python",

104

"Python is my favorite programming language",

105

"togethercomputer/m2-bert-80M-8k-retrieval"

106

)

107

print(f"Similarity score: {similarity_score:.4f}")

108

```

109

110

### Document Retrieval System

111

112

```python

113

def create_document_embeddings(documents: List[str], model: str) -> List[List[float]]:

114

"""Create embeddings for a collection of documents."""

115

response = client.embeddings.create(model=model, input=documents)

116

return [data.embedding for data in response.data]

117

118

def find_most_similar(query: str, documents: List[str], model: str, top_k: int = 3):

119

"""Find most similar documents to a query."""

120

# Create embeddings for query and documents

121

all_texts = [query] + documents

122

response = client.embeddings.create(model=model, input=all_texts)

123

embeddings = [data.embedding for data in response.data]

124

125

query_embedding = embeddings[0]

126

doc_embeddings = embeddings[1:]

127

128

# Calculate similarities

129

similarities = cosine_similarity([query_embedding], doc_embeddings)[0]

130

131

# Get top-k most similar documents

132

top_indices = np.argsort(similarities)[::-1][:top_k]

133

134

results = []

135

for idx in top_indices:

136

results.append({

137

'document': documents[idx],

138

'similarity': similarities[idx],

139

'index': idx

140

})

141

142

return results

143

144

# Example usage

145

documents = [

146

"Python is a versatile programming language",

147

"Machine learning models require large datasets",

148

"Web development with JavaScript frameworks",

149

"Database design and optimization techniques",

150

"Cloud computing and distributed systems"

151

]

152

153

query = "What programming languages are popular?"

154

results = find_most_similar(

155

query,

156

documents,

157

"togethercomputer/m2-bert-80M-8k-retrieval"

158

)

159

160

for result in results:

161

print(f"Similarity: {result['similarity']:.4f} - {result['document']}")

162

```

163

164

### Async Embedding Processing

165

166

```python

167

import asyncio

168

from together import AsyncTogether

169

170

async def process_embeddings_async():

171

client = AsyncTogether()

172

173

text_batches = [

174

["AI research and development", "Machine learning applications"],

175

["Data science methodologies", "Statistical analysis techniques"],

176

["Neural network architectures", "Deep learning frameworks"]

177

]

178

179

tasks = [

180

client.embeddings.create(

181

model="togethercomputer/m2-bert-80M-8k-retrieval",

182

input=batch

183

)

184

for batch in text_batches

185

]

186

187

responses = await asyncio.gather(*tasks)

188

189

all_embeddings = []

190

for response in responses:

191

batch_embeddings = [data.embedding for data in response.data]

192

all_embeddings.extend(batch_embeddings)

193

194

print(f"Generated {len(all_embeddings)} embeddings asynchronously")

195

return all_embeddings

196

197

embeddings = asyncio.run(process_embeddings_async())

198

```

199

200

## Types

201

202

### Request Types

203

204

```python { .api }

205

class EmbeddingRequest:

206

model: str

207

input: Union[str, List[str]]

208

```

209

210

### Response Types

211

212

```python { .api }

213

class EmbeddingResponse:

214

object: str

215

data: List[EmbeddingData]

216

model: str

217

usage: EmbeddingUsage

218

219

class EmbeddingData:

220

object: str

221

embedding: List[float]

222

index: int

223

224

class EmbeddingUsage:

225

prompt_tokens: int

226

total_tokens: int

227

```

228

229

## Supported Models

230

231

Common embedding models available through Together:

232

233

- `togethercomputer/m2-bert-80M-8k-retrieval` - Optimized for retrieval tasks

234

- `togethercomputer/m2-bert-80M-32k-retrieval` - Extended context retrieval

235

- `WhereIsAI/UAE-Large-V1` - General-purpose embedding model

236

- `BAAI/bge-large-en-v1.5` - High-quality English embeddings

237

- `BAAI/bge-base-en-v1.5` - Balanced performance and efficiency