or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

audio.mdbatch.mdchat-completions.mdcode-interpreter.mdcompletions.mdembeddings.mdendpoints.mdevaluation.mdfiles.mdfine-tuning.mdimages.mdindex.mdmodels.mdrerank.md

models.mddocs/

0

# Models

1

2

Discovery and information retrieval for available AI models across different categories including language models, code models, vision models, and specialized models for various AI tasks.

3

4

## Capabilities

5

6

### Model Listing

7

8

List all available models with detailed information and capabilities.

9

10

```python { .api }

11

def list() -> List[ModelObject]:

12

"""

13

List all available models.

14

15

Returns:

16

List of ModelObject instances with model information

17

"""

18

```

19

20

### Async Model Listing

21

22

Asynchronous model listing for concurrent operations.

23

24

```python { .api }

25

async def list() -> List[ModelObject]:

26

"""

27

Asynchronously list all available models.

28

29

Returns:

30

List of ModelObject instances with model information

31

"""

32

```

33

34

## Usage Examples

35

36

### List All Models

37

38

```python

39

from together import Together

40

41

client = Together()

42

43

models = client.models.list()

44

45

print(f"Total available models: {len(models)}")

46

47

for model in models[:10]: # Show first 10 models

48

print(f"ID: {model.id}")

49

print(f"Type: {model.type}")

50

print(f"Created: {model.created}")

51

if hasattr(model, 'description'):

52

print(f"Description: {model.description}")

53

print("---")

54

```

55

56

### Filter Models by Type

57

58

```python

59

models = client.models.list()

60

61

# Categorize models by type

62

language_models = []

63

code_models = []

64

vision_models = []

65

embedding_models = []

66

67

for model in models:

68

model_id = model.id.lower()

69

70

if 'code' in model_id or 'codellama' in model_id:

71

code_models.append(model)

72

elif 'vision' in model_id or 'clip' in model_id:

73

vision_models.append(model)

74

elif 'embed' in model_id or 'bert' in model_id:

75

embedding_models.append(model)

76

else:

77

language_models.append(model)

78

79

print(f"Language models: {len(language_models)}")

80

print(f"Code models: {len(code_models)}")

81

print(f"Vision models: {len(vision_models)}")

82

print(f"Embedding models: {len(embedding_models)}")

83

```

84

85

### Find Specific Models

86

87

```python

88

def find_models_by_keyword(models: list, keyword: str):

89

"""Find models containing a specific keyword."""

90

matching_models = []

91

92

for model in models:

93

if keyword.lower() in model.id.lower():

94

matching_models.append(model)

95

96

return matching_models

97

98

models = client.models.list()

99

100

# Find Llama models

101

llama_models = find_models_by_keyword(models, "llama")

102

print(f"Found {len(llama_models)} Llama models:")

103

for model in llama_models[:5]:

104

print(f" - {model.id}")

105

106

# Find Stable Diffusion models

107

sd_models = find_models_by_keyword(models, "stable-diffusion")

108

print(f"Found {len(sd_models)} Stable Diffusion models:")

109

for model in sd_models:

110

print(f" - {model.id}")

111

```

112

113

### Model Capabilities Analysis

114

115

```python

116

def analyze_model_capabilities(models: list):

117

"""Analyze available model capabilities."""

118

capabilities = {

119

'chat': [],

120

'completion': [],

121

'embedding': [],

122

'image_generation': [],

123

'code_generation': [],

124

'vision': [],

125

'audio': []

126

}

127

128

for model in models:

129

model_id = model.id.lower()

130

131

# Categorize by capabilities

132

if any(keyword in model_id for keyword in ['chat', 'instruct', 'conversation']):

133

capabilities['chat'].append(model.id)

134

elif any(keyword in model_id for keyword in ['code', 'codellama', 'programming']):

135

capabilities['code_generation'].append(model.id)

136

elif any(keyword in model_id for keyword in ['embed', 'bert', 'retrieval']):

137

capabilities['embedding'].append(model.id)

138

elif any(keyword in model_id for keyword in ['stable-diffusion', 'dall-e', 'midjourney']):

139

capabilities['image_generation'].append(model.id)

140

elif any(keyword in model_id for keyword in ['vision', 'clip', 'visual']):

141

capabilities['vision'].append(model.id)

142

elif any(keyword in model_id for keyword in ['whisper', 'speech', 'audio']):

143

capabilities['audio'].append(model.id)

144

else:

145

capabilities['completion'].append(model.id)

146

147

return capabilities

148

149

models = client.models.list()

150

capabilities = analyze_model_capabilities(models)

151

152

for capability, model_list in capabilities.items():

153

print(f"{capability.title()}: {len(model_list)} models")

154

if model_list:

155

print(f" Examples: {', '.join(model_list[:3])}")

156

print()

157

```

158

159

### Model Information Display

160

161

```python

162

def display_model_info(model):

163

"""Display detailed information about a model."""

164

print(f"Model ID: {model.id}")

165

print(f"Object Type: {model.object}")

166

print(f"Created: {model.created}")

167

print(f"Owned By: {model.owned_by}")

168

169

# Display additional attributes if available

170

attributes = ['description', 'context_length', 'tokenizer', 'license']

171

for attr in attributes:

172

if hasattr(model, attr):

173

value = getattr(model, attr)

174

if value:

175

print(f"{attr.title()}: {value}")

176

177

print("---")

178

179

# Display information for specific models

180

models = client.models.list()

181

popular_models = [

182

"meta-llama/Llama-3.2-3B-Instruct-Turbo",

183

"codellama/CodeLlama-34b-Python-hf",

184

"stabilityai/stable-diffusion-xl-base-1.0"

185

]

186

187

for model_id in popular_models:

188

matching_models = [m for m in models if m.id == model_id]

189

if matching_models:

190

display_model_info(matching_models[0])

191

```

192

193

### Model Recommendation System

194

195

```python

196

def recommend_model(task_type: str, models: list):

197

"""Recommend models based on task type."""

198

recommendations = {

199

'chat': [

200

'meta-llama/Llama-3.2-3B-Instruct-Turbo',

201

'meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',

202

'Qwen/Qwen2.5-VL-72B-Instruct'

203

],

204

'code': [

205

'codellama/CodeLlama-34b-Python-hf',

206

'codellama/CodeLlama-13b-Instruct-hf',

207

'WizardLM/WizardCoder-Python-34B-V1.0'

208

],

209

'embedding': [

210

'togethercomputer/m2-bert-80M-8k-retrieval',

211

'BAAI/bge-large-en-v1.5',

212

'WhereIsAI/UAE-Large-V1'

213

],

214

'image': [

215

'stabilityai/stable-diffusion-xl-base-1.0',

216

'stabilityai/stable-diffusion-2-1',

217

'prompthero/openjourney'

218

]

219

}

220

221

if task_type not in recommendations:

222

return []

223

224

# Filter to only include available models

225

available_model_ids = [m.id for m in models]

226

available_recommendations = [

227

model_id for model_id in recommendations[task_type]

228

if model_id in available_model_ids

229

]

230

231

return available_recommendations

232

233

models = client.models.list()

234

235

# Get recommendations for different tasks

236

for task in ['chat', 'code', 'embedding', 'image']:

237

recommended = recommend_model(task, models)

238

print(f"{task.title()} task recommendations:")

239

for model_id in recommended:

240

print(f" - {model_id}")

241

print()

242

```

243

244

### Async Model Operations

245

246

```python

247

import asyncio

248

from together import AsyncTogether

249

250

async def analyze_models_async():

251

client = AsyncTogether()

252

253

# Get model list asynchronously

254

models = await client.models.list()

255

256

# Analyze model distribution

257

model_stats = {

258

'total': len(models),

259

'by_provider': {},

260

'by_type': {}

261

}

262

263

for model in models:

264

# Extract provider from model ID

265

if '/' in model.id:

266

provider = model.id.split('/')[0]

267

else:

268

provider = 'unknown'

269

270

model_stats['by_provider'][provider] = model_stats['by_provider'].get(provider, 0) + 1

271

272

# Categorize by type

273

model_type = getattr(model, 'type', 'unknown')

274

model_stats['by_type'][model_type] = model_stats['by_type'].get(model_type, 0) + 1

275

276

return model_stats

277

278

# Run async analysis

279

stats = asyncio.run(analyze_models_async())

280

print(f"Total models: {stats['total']}")

281

print(f"Top providers: {dict(list(stats['by_provider'].items())[:5])}")

282

print(f"Model types: {stats['by_type']}")

283

```

284

285

## Types

286

287

### Response Types

288

289

```python { .api }

290

class ModelObject:

291

id: str

292

object: str

293

created: int

294

owned_by: str

295

type: Optional[str] = None

296

description: Optional[str] = None

297

context_length: Optional[int] = None

298

tokenizer: Optional[str] = None

299

license: Optional[str] = None

300

```

301

302

## Popular Model Categories

303

304

### Language Models

305

- `meta-llama/Llama-3.2-3B-Instruct-Turbo` - Fast instruction-following

306

- `meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo` - Multi-modal with vision

307

- `Qwen/Qwen2.5-VL-72B-Instruct` - Large vision-language model

308

309

### Code Models

310

- `codellama/CodeLlama-34b-Python-hf` - Python code generation

311

- `codellama/CodeLlama-13b-Instruct-hf` - Code instruction following

312

- `WizardLM/WizardCoder-Python-34B-V1.0` - Advanced Python coding

313

314

### Embedding Models

315

- `togethercomputer/m2-bert-80M-8k-retrieval` - Retrieval optimized

316

- `BAAI/bge-large-en-v1.5` - High-quality English embeddings

317

- `WhereIsAI/UAE-Large-V1` - General-purpose embeddings

318

319

### Image Generation Models

320

- `stabilityai/stable-diffusion-xl-base-1.0` - High-quality image generation

321

- `stabilityai/stable-diffusion-2-1` - Versatile diffusion model

322

- `prompthero/openjourney` - Artistic and creative styles