or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

audio.mdbatch.mdchat-completions.mdcode-interpreter.mdcompletions.mdembeddings.mdendpoints.mdevaluation.mdfiles.mdfine-tuning.mdimages.mdindex.mdmodels.mdrerank.md

rerank.mddocs/

0

# Reranking

1

2

Document relevance scoring and reordering for improved search and retrieval results. Uses specialized reranking models to optimize document ordering based on query relevance, enhancing search quality for information retrieval systems.

3

4

## Capabilities

5

6

### Document Reranking

7

8

Reorder documents based on relevance to a query using specialized reranking models.

9

10

```python { .api }

11

def create(

12

model: str,

13

query: str,

14

documents: Union[List[str], List[Dict[str, Any]]],

15

top_n: Optional[int] = None,

16

return_documents: bool = False,

17

rank_fields: Optional[List[str]] = None,

18

**kwargs

19

) -> RerankResponse:

20

"""

21

Rerank documents based on query relevance.

22

23

Args:

24

model: Reranking model identifier

25

query: Search query for relevance comparison

26

documents: List of documents to rerank (strings or objects)

27

top_n: Number of top documents to return

28

return_documents: Include original documents in response

29

rank_fields: Fields to rank when documents are objects

30

31

Returns:

32

RerankResponse with relevance scores and rankings

33

"""

34

```

35

36

### Async Reranking

37

38

Asynchronous document reranking for concurrent processing.

39

40

```python { .api }

41

async def create(

42

model: str,

43

query: str,

44

documents: Union[List[str], List[Dict[str, Any]]],

45

**kwargs

46

) -> RerankResponse:

47

"""

48

Asynchronously rerank documents.

49

50

Returns:

51

RerankResponse with relevance scores and rankings

52

"""

53

```

54

55

## Usage Examples

56

57

### Basic Document Reranking

58

59

```python

60

from together import Together

61

62

client = Together()

63

64

query = "What is the capital of the United States?"

65

documents = [

66

"New York is the most populous city in the United States.",

67

"Washington, D.C. is the capital of the United States.",

68

"Los Angeles is known for its entertainment industry.",

69

"The United States has 50 states and a federal district.",

70

"Chicago is the third-largest city in the United States."

71

]

72

73

response = client.rerank.create(

74

model="Salesforce/Llama-Rank-V1",

75

query=query,

76

documents=documents,

77

top_n=3

78

)

79

80

print("Reranked documents by relevance:")

81

for result in response.results:

82

print(f"Rank {result.index + 1}: {documents[result.index]}")

83

print(f"Relevance score: {result.relevance_score:.4f}")

84

print("---")

85

```

86

87

### Advanced Reranking with Structured Documents

88

89

```python

90

# Documents with metadata

91

documents = [

92

{

93

"title": "Python Programming Basics",

94

"content": "Python is a high-level programming language known for its simplicity.",

95

"category": "programming"

96

},

97

{

98

"title": "Machine Learning Introduction",

99

"content": "Machine learning is a subset of artificial intelligence.",

100

"category": "ai"

101

},

102

{

103

"title": "Data Science with Python",

104

"content": "Python is widely used in data science for analysis and visualization.",

105

"category": "data-science"

106

}

107

]

108

109

query = "Python programming for beginners"

110

111

response = client.rerank.create(

112

model="Salesforce/Llama-Rank-V1",

113

query=query,

114

documents=documents,

115

top_n=2,

116

return_documents=True,

117

rank_fields=["title", "content"]

118

)

119

120

print("Top relevant documents:")

121

for result in response.results:

122

doc = documents[result.index]

123

print(f"Title: {doc['title']}")

124

print(f"Relevance: {result.relevance_score:.4f}")

125

print(f"Content: {doc['content'][:100]}...")

126

print("---")

127

```

128

129

## Types

130

131

### Request Types

132

133

```python { .api }

134

class RerankRequest:

135

model: str

136

query: str

137

documents: Union[List[str], List[Dict[str, Any]]]

138

top_n: Optional[int] = None

139

return_documents: bool = False

140

rank_fields: Optional[List[str]] = None

141

```

142

143

### Response Types

144

145

```python { .api }

146

class RerankResponse:

147

id: str

148

results: List[RerankResult]

149

meta: RerankMeta

150

151

class RerankResult:

152

index: int

153

relevance_score: float

154

document: Optional[Dict[str, Any]] = None

155

156

class RerankMeta:

157

api_version: Dict[str, str]

158

billed_units: Dict[str, int]

159

```

160

161

## Supported Models

162

163

- `Salesforce/Llama-Rank-V1` - High-quality reranking model

164

- `BAAI/bge-reranker-large` - BGE reranking model

165

- `BAAI/bge-reranker-base` - Efficient reranking model