or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

audio.mdclassification.mdclustering.mddetection.mdfunctional.mdimage.mdindex.mdmultimodal.mdnominal.mdregression.mdretrieval.mdsegmentation.mdshape.mdtext.mdutilities.mdvideo.md

shape.mddocs/

0

# Shape Metrics

1

2

Metrics for analyzing geometric shapes and spatial configurations, useful for computer graphics, 3D modeling, and shape analysis applications.

3

4

## Capabilities

5

6

### Shape Analysis

7

8

Metrics for comparing and analyzing geometric shape configurations.

9

10

```python { .api }

11

class ProcrustesDisparity(Metric):

12

def __init__(

13

self,

14

**kwargs

15

): ...

16

```

17

18

## Usage Examples

19

20

```python

21

import torch

22

from torchmetrics.shape import ProcrustesDisparity

23

24

# Procrustes analysis for shape comparison

25

procrustes = ProcrustesDisparity()

26

27

# Sample 3D point clouds or 2D shapes

28

# Shape: (batch, points, dimensions)

29

preds = torch.randn(4, 50, 3) # 4 shapes, 50 points each, 3D coordinates

30

target = torch.randn(4, 50, 3)

31

32

# Compute shape disparity after optimal alignment

33

disparity = procrustes(preds, target)

34

print(f"Procrustes Disparity: {disparity:.4f}")

35

```

36

37

## Types

38

39

```python { .api }

40

ShapePoints = Tensor # Shape: (batch, points, dimensions)

41

```