or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

audio.mdclassification.mdclustering.mddetection.mdfunctional.mdimage.mdindex.mdmultimodal.mdnominal.mdregression.mdretrieval.mdsegmentation.mdshape.mdtext.mdutilities.mdvideo.md

video.mddocs/

0

# Video Metrics

1

2

Specialized metrics for video quality assessment and evaluation, focusing on perceptual quality measures for video processing applications.

3

4

## Capabilities

5

6

### Video Quality Assessment

7

8

Advanced metrics for evaluating video quality (require optional dependencies).

9

10

```python { .api }

11

class VideoMultiMethodAssessmentFusion(Metric):

12

def __init__(

13

self,

14

**kwargs

15

): ...

16

```

17

18

## Usage Examples

19

20

```python

21

import torch

22

from torchmetrics.video import VideoMultiMethodAssessmentFusion

23

24

# Video quality assessment with VMAF

25

try:

26

vmaf = VideoMultiMethodAssessmentFusion()

27

28

# Sample video tensors (batch, channels, time, height, width)

29

preds = torch.randint(0, 256, (1, 3, 30, 480, 640), dtype=torch.uint8) # 30 frames

30

target = torch.randint(0, 256, (1, 3, 30, 480, 640), dtype=torch.uint8)

31

32

# Compute VMAF score

33

vmaf_score = vmaf(preds, target)

34

print(f"VMAF Score: {vmaf_score:.4f}")

35

36

except ImportError:

37

print("VMAF requires the 'torch-vmaf' package")

38

```

39

40

## Types

41

42

```python { .api }

43

VideoTensor = Tensor # Shape: (batch, channels, time, height, width)

44

```