or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

async-inference.mdchat-completions.mdconfiguration.mdindex.mdparameters-types.mdtext-classification.mdtext-embeddings.mdtext-generation.mdtext-scoring.md

chat-completions.mddocs/

0

# Chat Completions

1

2

Conversational AI interface supporting chat templates, tool calling, and multi-turn conversations with proper message formatting and context management. Provides OpenAI-compatible chat completion functionality.

3

4

## Capabilities

5

6

### Chat Interface

7

8

Generate responses in conversational format with support for system messages, user messages, assistant messages, and advanced features like tool calling.

9

10

```python { .api }

11

def chat(

12

self,

13

messages: List[ChatCompletionMessageParam],

14

chat_template: Optional[str] = None,

15

chat_template_content_format: ChatTemplateContentFormatOption = "auto",

16

add_generation_prompt: bool = True,

17

continue_final_message: bool = False,

18

tools: Optional[List[ChatCompletionToolParam]] = None,

19

documents: Optional[List[ChatCompletionDocumentParam]] = None,

20

mm_processor_kwargs: Optional[Dict[str, Any]] = None,

21

**kwargs: Any,

22

) -> List[ChatCompletionOutput]:

23

"""

24

Generate chat completions from conversation messages.

25

26

Parameters:

27

- messages: List of conversation messages with roles and content

28

- chat_template: Custom chat template for message formatting

29

- chat_template_content_format: Content format handling ("auto", "string", "openai")

30

- add_generation_prompt: Whether to add generation prompt

31

- continue_final_message: Continue from the last assistant message

32

- tools: Available tools for function calling

33

- documents: Context documents for retrieval

34

- mm_processor_kwargs: Multimodal processing arguments

35

36

Returns:

37

List of ChatCompletionOutput objects with generated responses

38

"""

39

```

40

41

## Usage Examples

42

43

### Basic Chat Conversation

44

45

```python

46

from vllm import LLM

47

48

llm = LLM(model="microsoft/DialoGPT-medium")

49

50

messages = [

51

{"role": "system", "content": "You are a helpful assistant."},

52

{"role": "user", "content": "What is the capital of France?"},

53

]

54

55

response = llm.chat(messages)

56

print(response[0].message.content)

57

```

58

59

## Types

60

61

```python { .api }

62

class ChatCompletionMessageParam:

63

role: str # "system", "user", "assistant"

64

content: str # Message content

65

66

class ChatCompletionOutput:

67

message: ChatMessage # Generated response

68

finish_reason: Optional[str] # Completion reason

69

```