0
# Text Embeddings
1
2
Text encoding and embedding generation for semantic similarity, retrieval applications, and downstream NLP tasks. Supports various pooling strategies and normalization options for different use cases.
3
4
## Capabilities
5
6
### Text Encoding
7
8
Generate dense vector representations of text for semantic tasks, similarity search, and downstream machine learning applications.
9
10
```python { .api }
11
def encode(
12
self,
13
prompts: Union[PromptType, Sequence[PromptType], DataPrompt],
14
pooling_params: Optional[Union[PoolingParams, Sequence[PoolingParams]]] = None,
15
*,
16
truncate_prompt_tokens: Optional[int] = None,
17
use_tqdm: Union[bool, Callable[..., tqdm]] = True,
18
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
19
pooling_task: PoolingTask = "encode",
20
tokenization_kwargs: Optional[Dict[str, Any]] = None
21
) -> List[PoolingRequestOutput]:
22
"""
23
Generate embeddings for input text.
24
25
Parameters:
26
- prompts: Input text or token sequences
27
- pooling_params: Pooling strategy and normalization options
28
- truncate_prompt_tokens: Maximum prompt length (keyword-only)
29
- use_tqdm: Show progress bar (keyword-only)
30
- lora_request: LoRA adapter configuration (keyword-only)
31
- pooling_task: The pooling task to perform (keyword-only)
32
- tokenization_kwargs: Additional tokenization options (keyword-only)
33
34
Returns:
35
List of PoolingRequestOutput with vector representations
36
"""
37
```
38
39
## Usage Examples
40
41
### Basic Text Embeddings
42
43
```python
44
from vllm import LLM, PoolingParams
45
46
llm = LLM(model="sentence-transformers/all-MiniLM-L6-v2")
47
48
texts = [
49
"The quick brown fox jumps over the lazy dog.",
50
"A fast fox leaps over a sleeping dog.",
51
"Python is a programming language."
52
]
53
54
pooling_params = PoolingParams(pooling_type="MEAN", normalize=True)
55
outputs = llm.encode(texts, pooling_params=pooling_params)
56
57
for output in outputs:
58
print(f"Embedding dimension: {len(output.outputs.data)}")
59
```
60
61
## Types
62
63
```python { .api }
64
class PoolingRequestOutput:
65
id: str
66
outputs: PoolingOutput
67
prompt_token_ids: List[int]
68
finished: bool
69
70
class PoolingOutput:
71
data: List[float] # Dense vector representation
72
```