or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

async-inference.mdchat-completions.mdconfiguration.mdindex.mdparameters-types.mdtext-classification.mdtext-embeddings.mdtext-generation.mdtext-scoring.md

text-embeddings.mddocs/

0

# Text Embeddings

1

2

Text encoding and embedding generation for semantic similarity, retrieval applications, and downstream NLP tasks. Supports various pooling strategies and normalization options for different use cases.

3

4

## Capabilities

5

6

### Text Encoding

7

8

Generate dense vector representations of text for semantic tasks, similarity search, and downstream machine learning applications.

9

10

```python { .api }

11

def encode(

12

self,

13

prompts: Union[PromptType, Sequence[PromptType], DataPrompt],

14

pooling_params: Optional[Union[PoolingParams, Sequence[PoolingParams]]] = None,

15

*,

16

truncate_prompt_tokens: Optional[int] = None,

17

use_tqdm: Union[bool, Callable[..., tqdm]] = True,

18

lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,

19

pooling_task: PoolingTask = "encode",

20

tokenization_kwargs: Optional[Dict[str, Any]] = None

21

) -> List[PoolingRequestOutput]:

22

"""

23

Generate embeddings for input text.

24

25

Parameters:

26

- prompts: Input text or token sequences

27

- pooling_params: Pooling strategy and normalization options

28

- truncate_prompt_tokens: Maximum prompt length (keyword-only)

29

- use_tqdm: Show progress bar (keyword-only)

30

- lora_request: LoRA adapter configuration (keyword-only)

31

- pooling_task: The pooling task to perform (keyword-only)

32

- tokenization_kwargs: Additional tokenization options (keyword-only)

33

34

Returns:

35

List of PoolingRequestOutput with vector representations

36

"""

37

```

38

39

## Usage Examples

40

41

### Basic Text Embeddings

42

43

```python

44

from vllm import LLM, PoolingParams

45

46

llm = LLM(model="sentence-transformers/all-MiniLM-L6-v2")

47

48

texts = [

49

"The quick brown fox jumps over the lazy dog.",

50

"A fast fox leaps over a sleeping dog.",

51

"Python is a programming language."

52

]

53

54

pooling_params = PoolingParams(pooling_type="MEAN", normalize=True)

55

outputs = llm.encode(texts, pooling_params=pooling_params)

56

57

for output in outputs:

58

print(f"Embedding dimension: {len(output.outputs.data)}")

59

```

60

61

## Types

62

63

```python { .api }

64

class PoolingRequestOutput:

65

id: str

66

outputs: PoolingOutput

67

prompt_token_ids: List[int]

68

finished: bool

69

70

class PoolingOutput:

71

data: List[float] # Dense vector representation

72

```