0
# Ensemble Analysis
1
2
Multi-model climate ensemble processing and analysis tools for climate projection assessment and uncertainty quantification. Essential for climate change impact studies and decision-making under uncertainty.
3
4
## Capabilities
5
6
### Ensemble Creation and Management
7
8
Tools for creating and managing climate model ensembles.
9
10
```python { .api }
11
def create_ensemble(datasets, multiindex=True, resample_freq=None, **kwargs):
12
"""
13
Create ensemble dataset from multiple climate model datasets.
14
15
Parameters:
16
- datasets: list or dict, climate model datasets to combine
17
- multiindex: bool, use multiindex for ensemble dimensions
18
- resample_freq: str, optional resampling frequency
19
- **kwargs: additional ensemble creation parameters
20
21
Returns:
22
xr.Dataset: Combined ensemble dataset
23
"""
24
25
def ensemble_mean_std_max_min(ens, weights=None, **kwargs):
26
"""
27
Calculate ensemble statistics (mean, std, max, min).
28
29
Parameters:
30
- ens: xr.Dataset, ensemble dataset
31
- weights: xr.DataArray, optional weights for ensemble members
32
- **kwargs: additional statistical parameters
33
34
Returns:
35
xr.Dataset: Ensemble statistics
36
"""
37
38
def ensemble_percentiles(ens, values=[10, 25, 50, 75, 90], weights=None, **kwargs):
39
"""
40
Calculate ensemble percentiles.
41
42
Parameters:
43
- ens: xr.Dataset, ensemble dataset
44
- values: list, percentile values to calculate (0-100)
45
- weights: xr.DataArray, optional weights for members
46
- **kwargs: additional parameters
47
48
Returns:
49
xr.Dataset: Ensemble percentiles
50
"""
51
```
52
53
### Ensemble Agreement and Robustness
54
55
Methods for assessing ensemble agreement and robustness of climate projections.
56
57
```python { .api }
58
def robustness_fractions(ens, test="threshold", **kwargs):
59
"""
60
Calculate robustness fractions for ensemble agreement.
61
62
Parameters:
63
- ens: xr.Dataset, ensemble dataset
64
- test: str, robustness test ("threshold", "sign", "range")
65
- **kwargs: test-specific parameters
66
67
Returns:
68
xr.Dataset: Robustness fraction statistics
69
"""
70
71
def change_significance(ens, baseline_period, projection_period, **kwargs):
72
"""
73
Test significance of projected changes across ensemble.
74
75
Parameters:
76
- ens: xr.Dataset, ensemble dataset
77
- baseline_period: slice, baseline time period
78
- projection_period: slice, projection time period
79
- **kwargs: significance test parameters
80
81
Returns:
82
xr.Dataset: Change significance statistics
83
"""
84
```
85
86
## Usage Examples
87
88
```python
89
import xarray as xr
90
import xclim.ensembles as xce
91
92
# Load multiple model datasets
93
models = [
94
xr.open_dataset(f"model_{i}.nc") for i in range(1, 11)
95
]
96
97
# Create ensemble
98
ensemble = xce.create_ensemble(models, multiindex=True)
99
100
# Calculate ensemble statistics
101
ens_stats = xce.ensemble_mean_std_max_min(ensemble)
102
ens_percentiles = xce.ensemble_percentiles(ensemble, values=[10, 50, 90])
103
104
# Assess robustness
105
robustness = xce.robustness_fractions(ensemble, test="threshold")
106
```