or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

array-creation.mdcodecs.mdconfiguration.mdcore-classes.mddata-access.mddata-io.mdgroup-management.mdindex.mdstorage-backends.md

group-management.mddocs/

0

# Group Management

1

2

Functions for creating and managing hierarchical group structures. Groups provide organizational capabilities for complex datasets with multiple related arrays and enable hierarchical data organization.

3

4

## Capabilities

5

6

### Group Creation

7

8

```python { .api }

9

def group(

10

store: StoreLike = None,

11

overwrite: bool = False,

12

chunk_store: StoreLike = None,

13

cache_attrs: bool = True,

14

synchronizer: Any = None,

15

path: str = None,

16

**kwargs

17

) -> Group

18

```

19

20

Create or open a zarr group.

21

22

```python { .api }

23

def create_group(

24

store: StoreLike,

25

path: str = None,

26

overwrite: bool = False,

27

chunk_store: StoreLike = None,

28

cache_attrs: bool = True,

29

synchronizer: Any = None,

30

**kwargs

31

) -> Group

32

```

33

34

Create a new zarr group in specified storage.

35

36

```python { .api }

37

def create_hierarchy(

38

path: str,

39

*args,

40

**kwargs

41

) -> None

42

```

43

44

Create a hierarchical directory structure for zarr groups.

45

46

## Usage Examples

47

48

### Basic Group Operations

49

50

```python

51

import zarr

52

53

# Create group

54

grp = zarr.group()

55

56

# Add arrays to group

57

grp.create_array('temperature', shape=(365, 100, 100))

58

grp.create_array('pressure', shape=(365, 100, 100))

59

60

# Create nested groups

61

weather = grp.create_group('weather_data')

62

weather.create_array('daily_temp', shape=(365,))

63

```

64

65

### Persistent Group Storage

66

67

```python

68

# Create group in storage

69

grp = zarr.create_group('experiment_data.zarr')

70

71

# Organize data hierarchically

72

raw_data = grp.create_group('raw')

73

processed = grp.create_group('processed')

74

results = grp.create_group('results')

75

76

# Add arrays at different levels

77

raw_data.create_array('sensor1', shape=(1000, 10))

78

processed.create_array('filtered', shape=(1000, 10))

79

results.create_array('summary', shape=(10,))

80

```