or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

artifact-config.mdartifacts.mdclient.mdconfig.mdenums.mdexceptions.mdhooks.mdindex.mdintegrations.mdmaterializers.mdmetadata-tags.mdmodels.mdpipelines-and-steps.mdpydantic-models.mdservices.mdstack-components.mdstacks.mdtypes.mdutilities.md

utilities.mddocs/

0

# Utilities

1

2

Utility functions for dashboard, environment operations, and other helpers.

3

4

## Capabilities

5

6

### Show Dashboard

7

8

```python { .api }

9

def show(port: int = None):

10

"""

11

Opens the ZenML dashboard in a browser.

12

13

Starts the ZenML dashboard server (if not already running) and

14

opens it in the default web browser.

15

16

Parameters:

17

- port: Port number to use (optional, default: 8237)

18

19

Example:

20

```python

21

from zenml import show

22

23

# Open dashboard on default port

24

show()

25

26

# Open dashboard on custom port

27

show(port=8080)

28

```

29

30

Note: Also available as:

31

```python

32

from zenml.utils.dashboard_utils import show_dashboard

33

show_dashboard()

34

```

35

"""

36

```

37

38

Import from:

39

40

```python

41

from zenml import show

42

```

43

44

## Usage Examples

45

46

### Opening Dashboard

47

48

```python

49

from zenml import show

50

51

# Open dashboard

52

show()

53

```

54

55

### Custom Port

56

57

```python

58

from zenml import show

59

60

# Open on specific port

61

show(port=8080)

62

```

63

64

### Dashboard in Scripts

65

66

```python

67

from zenml import pipeline, step, show

68

from zenml.client import Client

69

70

@step

71

def train_model(data: list) -> dict:

72

return {"model": "trained"}

73

74

@pipeline

75

def training_pipeline():

76

train_model([1, 2, 3])

77

78

if __name__ == "__main__":

79

# Run pipeline

80

training_pipeline()

81

82

# Open dashboard to view results

83

show()

84

```

85