or run

tessl search
Log in

senior-prompt-engineer

tessl install github:alirezarezvani/claude-skills --skill senior-prompt-engineer

github.com/alirezarezvani/claude-skills

This skill should be used when the user asks to "optimize prompts", "design prompt templates", "evaluate LLM outputs", "build agentic systems", "implement RAG", "create few-shot examples", "analyze token usage", or "design AI workflows". Use for prompt engineering patterns, LLM evaluation frameworks, agent architectures, and structured output design.

Review Score

82%

Validation Score

13/16

Implementation Score

85%

Activation Score

72%

Senior Prompt Engineer

Prompt engineering patterns, LLM evaluation frameworks, and agentic system design.

Table of Contents

  • Quick Start
  • Tools Overview
  • Prompt Engineering Workflows
  • Reference Documentation
  • Common Patterns Quick Reference

Quick Start

# Analyze and optimize a prompt file
python scripts/prompt_optimizer.py prompts/my_prompt.txt --analyze

# Evaluate RAG retrieval quality
python scripts/rag_evaluator.py --contexts contexts.json --questions questions.json

# Visualize agent workflow from definition
python scripts/agent_orchestrator.py agent_config.yaml --visualize

Tools Overview

1. Prompt Optimizer

Analyzes prompts for token efficiency, clarity, and structure. Generates optimized versions.

Input: Prompt text file or string Output: Analysis report with optimization suggestions

Usage:

# Analyze a prompt file
python scripts/prompt_optimizer.py prompt.txt --analyze

# Output:
# Token count: 847
# Estimated cost: $0.0025 (GPT-4)
# Clarity score: 72/100
# Issues found:
#   - Ambiguous instruction at line 3
#   - Missing output format specification
#   - Redundant context (lines 12-15 repeat lines 5-8)
# Suggestions:
#   1. Add explicit output format: "Respond in JSON with keys: ..."
#   2. Remove redundant context to save 89 tokens
#   3. Clarify "analyze" -> "list the top 3 issues with severity ratings"

# Generate optimized version
python scripts/prompt_optimizer.py prompt.txt --optimize --output optimized.txt

# Count tokens for cost estimation
python scripts/prompt_optimizer.py prompt.txt --tokens --model gpt-4

# Extract and manage few-shot examples
python scripts/prompt_optimizer.py prompt.txt --extract-examples --output examples.json

2. RAG Evaluator

Evaluates Retrieval-Augmented Generation quality by measuring context relevance and answer faithfulness.

Input: Retrieved contexts (JSON) and questions/answers Output: Evaluation metrics and quality report

Usage:

# Evaluate retrieval quality
python scripts/rag_evaluator.py --contexts retrieved.json --questions eval_set.json

# Output:
# === RAG Evaluation Report ===
# Questions evaluated: 50
#
# Retrieval Metrics:
#   Context Relevance: 0.78 (target: >0.80)
#   Retrieval Precision@5: 0.72
#   Coverage: 0.85
#
# Generation Metrics:
#   Answer Faithfulness: 0.91
#   Groundedness: 0.88
#
# Issues Found:
#   - 8 questions had no relevant context in top-5
#   - 3 answers contained information not in context
#
# Recommendations:
#   1. Improve chunking strategy for technical documents
#   2. Add metadata filtering for date-sensitive queries

# Evaluate with custom metrics
python scripts/rag_evaluator.py --contexts retrieved.json --questions eval_set.json \
    --metrics relevance,faithfulness,coverage

# Export detailed results
python scripts/rag_evaluator.py --contexts retrieved.json --questions eval_set.json \
    --output report.json --verbose

3. Agent Orchestrator

Parses agent definitions and visualizes execution flows. Validates tool configurations.

Input: Agent configuration (YAML/JSON) Output: Workflow visualization, validation report

Usage:

# Validate agent configuration
python scripts/agent_orchestrator.py agent.yaml --validate

# Output:
# === Agent Validation Report ===
# Agent: research_assistant
# Pattern: ReAct
#
# Tools (4 registered):
#   [OK] web_search - API key configured
#   [OK] calculator - No config needed
#   [WARN] file_reader - Missing allowed_paths
#   [OK] summarizer - Prompt template valid
#
# Flow Analysis:
#   Max depth: 5 iterations
#   Estimated tokens/run: 2,400-4,800
#   Potential infinite loop: No
#
# Recommendations:
#   1. Add allowed_paths to file_reader for security
#   2. Consider adding early exit condition for simple queries

# Visualize agent workflow (ASCII)
python scripts/agent_orchestrator.py agent.yaml --visualize

# Output:
# ┌─────────────────────────────────────────┐
# │            research_assistant           │
# │              (ReAct Pattern)            │
# └─────────────────┬───────────────────────┘
#                   │
#          ┌────────▼────────┐
#          │   User Query    │
#          └────────┬────────┘
#                   │
#          ┌────────▼────────┐
#          │     Think       │◄──────┐
#          └────────┬────────┘       │
#                   │                │
#          ┌────────▼────────┐       │
#          │   Select Tool   │       │
#          └────────┬────────┘       │
#                   │                │
#     ┌─────────────┼─────────────┐  │
#     ▼             ▼             ▼  │
# [web_search] [calculator] [file_reader]
#     │             │             │  │
#     └─────────────┼─────────────┘  │
#                   │                │
#          ┌────────▼────────┐       │
#          │    Observe      │───────┘
#          └────────┬────────┘
#                   │
#          ┌────────▼────────┐
#          │  Final Answer   │
#          └─────────────────┘

# Export workflow as Mermaid diagram
python scripts/agent_orchestrator.py agent.yaml --visualize --format mermaid

Prompt Engineering Workflows

Prompt Optimization Workflow

Use when improving an existing prompt's performance or reducing token costs.

Step 1: Baseline current prompt

python scripts/prompt_optimizer.py current_prompt.txt --analyze --output baseline.json

Step 2: Identify issues Review the analysis report for:

  • Token waste (redundant instructions, verbose examples)
  • Ambiguous instructions (unclear output format, vague verbs)
  • Missing constraints (no length limits, no format specification)

Step 3: Apply optimization patterns

IssuePattern to Apply
Ambiguous outputAdd explicit format specification
Too verboseExtract to few-shot examples
Inconsistent resultsAdd role/persona framing
Missing edge casesAdd constraint boundaries

Step 4: Generate optimized version

python scripts/prompt_optimizer.py current_prompt.txt --optimize --output optimized.txt

Step 5: Compare results

python scripts/prompt_optimizer.py optimized.txt --analyze --compare baseline.json
# Shows: token reduction, clarity improvement, issues resolved

Step 6: Validate with test cases Run both prompts against your evaluation set and compare outputs.

Few-Shot Example Design Workflow

Use when creating examples for in-context learning.

Step 1: Define the task clearly

Task: Extract product entities from customer reviews
Input: Review text
Output: JSON with {product_name, sentiment, features_mentioned}

Step 2: Select diverse examples (3-5 recommended)

Example TypePurpose
Simple caseShows basic pattern
Edge caseHandles ambiguity
Complex caseMultiple entities
Negative caseWhat NOT to extract

Step 3: Format consistently

Example 1:
Input: "Love my new iPhone 15, the camera is amazing!"
Output: {"product_name": "iPhone 15", "sentiment": "positive", "features_mentioned": ["camera"]}

Example 2:
Input: "The laptop was okay but battery life is terrible."
Output: {"product_name": "laptop", "sentiment": "mixed", "features_mentioned": ["battery life"]}

Step 4: Validate example quality

python scripts/prompt_optimizer.py prompt_with_examples.txt --validate-examples
# Checks: consistency, coverage, format alignment

Step 5: Test with held-out cases Ensure model generalizes beyond your examples.

Structured Output Design Workflow

Use when you need reliable JSON/XML/structured responses.

Step 1: Define schema

{
  "type": "object",
  "properties": {
    "summary": {"type": "string", "maxLength": 200},
    "sentiment": {"enum": ["positive", "negative", "neutral"]},
    "confidence": {"type": "number", "minimum": 0, "maximum": 1}
  },
  "required": ["summary", "sentiment"]
}

Step 2: Include schema in prompt

Respond with JSON matching this schema:
- summary (string, max 200 chars): Brief summary of the content
- sentiment (enum): One of "positive", "negative", "neutral"
- confidence (number 0-1): Your confidence in the sentiment

Step 3: Add format enforcement

IMPORTANT: Respond ONLY with valid JSON. No markdown, no explanation.
Start your response with { and end with }

Step 4: Validate outputs

python scripts/prompt_optimizer.py structured_prompt.txt --validate-schema schema.json

Reference Documentation

FileContainsLoad when user asks about
references/prompt_engineering_patterns.md10 prompt patterns with input/output examples"which pattern?", "few-shot", "chain-of-thought", "role prompting"
references/llm_evaluation_frameworks.mdEvaluation metrics, scoring methods, A/B testing"how to evaluate?", "measure quality", "compare prompts"
references/agentic_system_design.mdAgent architectures (ReAct, Plan-Execute, Tool Use)"build agent", "tool calling", "multi-agent"

Common Patterns Quick Reference

PatternWhen to UseExample
Zero-shotSimple, well-defined tasks"Classify this email as spam or not spam"
Few-shotComplex tasks, consistent format neededProvide 3-5 examples before the task
Chain-of-ThoughtReasoning, math, multi-step logic"Think step by step..."
Role PromptingExpertise needed, specific perspective"You are an expert tax accountant..."
Structured OutputNeed parseable JSON/XMLInclude schema + format enforcement

Common Commands

# Prompt Analysis
python scripts/prompt_optimizer.py prompt.txt --analyze          # Full analysis
python scripts/prompt_optimizer.py prompt.txt --tokens           # Token count only
python scripts/prompt_optimizer.py prompt.txt --optimize         # Generate optimized version

# RAG Evaluation
python scripts/rag_evaluator.py --contexts ctx.json --questions q.json  # Evaluate
python scripts/rag_evaluator.py --contexts ctx.json --compare baseline  # Compare to baseline

# Agent Development
python scripts/agent_orchestrator.py agent.yaml --validate       # Validate config
python scripts/agent_orchestrator.py agent.yaml --visualize      # Show workflow
python scripts/agent_orchestrator.py agent.yaml --estimate-cost  # Token estimation