tessl install github:giuseppe-trisciuoglio/developer-kit --skill langchain4j-tool-function-calling-patternsgithub.com/giuseppe-trisciuoglio/developer-kit
Tool and function calling patterns with LangChain4j. Define tools, handle function calls, and integrate with LLM agents. Use when building agentic applications that interact with tools.
Review Score
74%
Validation Score
12/16
Implementation Score
73%
Activation Score
67%
Define tools and enable AI agents to interact with external systems, APIs, and services using LangChain4j's annotation-based and programmatic tool system.
Use this skill when:
// Define tools using @Tool annotation
public class CalculatorTools {
@Tool("Add two numbers")
public double add(double a, double b) {
return a + b;
}
}
// Register with AiServices builder
interface MathAssistant {
String ask(String question);
}
MathAssistant assistant = AiServices.builder(MathAssistant.class)
.chatModel(chatModel)
.tools(new CalculatorTools())
.build();AiServices.builder(AssistantInterface.class)
// Static tool registration
.tools(new Calculator(), new WeatherService())
// Dynamic tool provider
.toolProvider(new DynamicToolProvider())
// Concurrent execution
.executeToolsConcurrently()
// Error handling
.toolExecutionErrorHandler((request, exception) -> {
return "Error: " + exception.getMessage();
})
// Memory for context
.chatMemoryProvider(userId -> MessageWindowChatMemory.withMaxMessages(20))
.build();Use @Tool annotation to define methods as executable tools:
public class BasicTools {
@Tool("Add two numbers")
public int add(@P("first number") int a, @P("second number") int b) {
return a + b;
}
@Tool("Get greeting")
public String greet(@P("name to greet") String name) {
return "Hello, " + name + "!";
}
}Provide clear parameter descriptions using @P annotation:
public class WeatherService {
@Tool("Get current weather conditions")
public String getCurrentWeather(
@P("City name or coordinates") String location,
@P("Temperature unit (celsius, fahrenheit)", required = false) String unit) {
// Implementation with validation
if (location == null || location.trim().isEmpty()) {
return "Location is required";
}
return weatherClient.getCurrentWeather(location, unit);
}
}Use Java records and descriptions for complex objects:
public class OrderService {
@Description("Customer order information")
public record OrderRequest(
@Description("Customer ID") String customerId,
@Description("List of items") List<OrderItem> items,
@JsonProperty(required = false) @Description("Delivery instructions") String instructions
) {}
@Tool("Create customer order")
public String createOrder(OrderRequest order) {
return orderService.processOrder(order);
}
}Access user context using @ToolMemoryId:
public class PersonalizedTools {
@Tool("Get user preferences")
public String getPreferences(
@ToolMemoryId String userId,
@P("Preference category") String category) {
return preferenceService.getPreferences(userId, category);
}
}Create tools that change based on context:
public class ContextAwareToolProvider implements ToolProvider {
@Override
public ToolProviderResult provideTools(ToolProviderRequest request) {
String message = request.userMessage().singleText().toLowerCase();
var builder = ToolProviderResult.builder();
if (message.contains("weather")) {
builder.add(weatherToolSpec, weatherExecutor);
}
if (message.contains("calculate")) {
builder.add(calcToolSpec, calcExecutor);
}
return builder.build();
}
}Return results immediately without full AI response:
public class QuickTools {
@Tool(value = "Get current time", returnBehavior = ReturnBehavior.IMMEDIATE)
public String getCurrentTime() {
return LocalDateTime.now().format(DateTimeFormatter.ISO_LOCAL_DATE_TIME);
}
}Handle tool execution errors gracefully:
AiServices.builder(Assistant.class)
.chatModel(chatModel)
.tools(new ExternalServiceTools())
.toolExecutionErrorHandler((request, exception) -> {
if (exception instanceof ApiException) {
return "Service temporarily unavailable: " + exception.getMessage();
}
return "An error occurred while processing your request";
})
.build();Implement circuit breakers and retries:
public class ResilientService {
private final CircuitBreaker circuitBreaker = CircuitBreaker.ofDefaults("external-api");
@Tool("Get external data")
public String getExternalData(@P("Data identifier") String id) {
return circuitBreaker.executeSupplier(() -> {
return externalApi.getData(id);
});
}
}@Service
public class MultiDomainToolService {
public String processRequest(String userId, String request, String domain) {
String contextualRequest = String.format("[Domain: %s] %s", domain, request);
Result<String> result = assistant.chat(userId, contextualRequest);
// Log tool usage
result.toolExecutions().forEach(execution ->
analyticsService.recordToolUsage(userId, domain, execution.request().name()));
return result.content();
}
}interface StreamingAssistant {
TokenStream chat(String message);
}
StreamingAssistant assistant = AiServices.builder(StreamingAssistant.class)
.streamingChatModel(streamingChatModel)
.tools(new Tools())
.build();
TokenStream stream = assistant.chat("What's the weather and calculate 15*8?");
stream
.onToolExecuted(execution ->
System.out.println("Executed: " + execution.request().name()))
.onPartialResponse(System.out::print)
.onComplete(response -> System.out.println("Complete!"))
.start();executeToolsConcurrently() for independent toolsFor detailed API reference, examples, and advanced patterns, see:
Problem: LLM calls tools that don't exist
Solution: Implement hallucination handler:
.hallucinatedToolNameStrategy(request -> {
return ToolExecutionResultMessage.from(request,
"Error: Tool '" + request.name() + "' does not exist");
})Problem: Tools receive invalid parameters
Solution: Add input validation and error handlers:
.toolArgumentsErrorHandler((error, context) -> {
return ToolErrorHandlerResult.text("Invalid arguments: " + error.getMessage());
})Problem: Tools are slow or timeout
Solution: Use concurrent execution and resilience patterns:
.executeToolsConcurrently(Executors.newFixedThreadPool(5))
.toolExecutionTimeout(Duration.ofSeconds(30))langchain4j-ai-services-patternslangchain4j-rag-implementation-patternslangchain4j-spring-boot-integration