tessl install github:jeremylongshore/claude-code-plugins-plus-skills --skill clay-load-scalegithub.com/jeremylongshore/claude-code-plugins-plus-skills
Implement Clay load testing, auto-scaling, and capacity planning strategies. Use when running performance tests, configuring horizontal scaling, or planning capacity for Clay integrations. Trigger with phrases like "clay load test", "clay scale", "clay performance test", "clay capacity", "clay k6", "clay benchmark".
Review Score
88%
Validation Score
12/16
Implementation Score
88%
Activation Score
90%
Load testing, scaling strategies, and capacity planning for Clay integrations.
// clay-load-test.js
import http from 'k6/http';
import { check, sleep } from 'k6';
export const options = {
stages: [
{ duration: '2m', target: 10 }, // Ramp up
{ duration: '5m', target: 10 }, // Steady state
{ duration: '2m', target: 50 }, // Ramp to peak
{ duration: '5m', target: 50 }, // Stress test
{ duration: '2m', target: 0 }, // Ramp down
],
thresholds: {
http_req_duration: ['p(95)<500'],
http_req_failed: ['rate<0.01'],
},
};
export default function () {
const response = http.post(
'https://api.clay.com/v1/resource',
JSON.stringify({ test: true }),
{
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${__ENV.CLAY_API_KEY}`,
},
}
);
check(response, {
'status is 200': (r) => r.status === 200,
'latency < 500ms': (r) => r.timings.duration < 500,
});
sleep(1);
}# Install k6
brew install k6 # macOS
# or: sudo apt install k6 # Linux
# Run test
k6 run --env CLAY_API_KEY=${CLAY_API_KEY} clay-load-test.js
# Run with output to InfluxDB
k6 run --out influxdb=http://localhost:8086/k6 clay-load-test.js# kubernetes HPA
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: clay-integration-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: clay-integration
minReplicas: 2
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Pods
pods:
metric:
name: clay_queue_depth
target:
type: AverageValue
averageValue: 100import { Pool } from 'generic-pool';
const clayPool = Pool.create({
create: async () => {
return new ClayClient({
apiKey: process.env.CLAY_API_KEY!,
});
},
destroy: async (client) => {
await client.close();
},
max: 20,
min: 5,
idleTimeoutMillis: 30000,
});
async function withClayClient<T>(
fn: (client: ClayClient) => Promise<T>
): Promise<T> {
const client = await clayPool.acquire();
try {
return await fn(client);
} finally {
clayPool.release(client);
}
}| Metric | Warning | Critical |
|---|---|---|
| CPU Utilization | > 70% | > 85% |
| Memory Usage | > 75% | > 90% |
| Request Queue Depth | > 100 | > 500 |
| Error Rate | > 1% | > 5% |
| P95 Latency | > 1000ms | > 3000ms |
interface CapacityEstimate {
currentRPS: number;
maxRPS: number;
headroom: number;
scaleRecommendation: string;
}
function estimateClayCapacity(
metrics: SystemMetrics
): CapacityEstimate {
const currentRPS = metrics.requestsPerSecond;
const avgLatency = metrics.p50Latency;
const cpuUtilization = metrics.cpuPercent;
// Estimate max RPS based on current performance
const maxRPS = currentRPS / (cpuUtilization / 100) * 0.7; // 70% target
const headroom = ((maxRPS - currentRPS) / currentRPS) * 100;
return {
currentRPS,
maxRPS: Math.floor(maxRPS),
headroom: Math.round(headroom),
scaleRecommendation: headroom < 30
? 'Scale up soon'
: headroom < 50
? 'Monitor closely'
: 'Adequate capacity',
};
}## Clay Performance Benchmark
**Date:** YYYY-MM-DD
**Environment:** [staging/production]
**SDK Version:** X.Y.Z
### Test Configuration
- Duration: 10 minutes
- Ramp: 10 → 100 → 10 VUs
- Target endpoint: /v1/resource
### Results
| Metric | Value |
|--------|-------|
| Total Requests | 50,000 |
| Success Rate | 99.9% |
| P50 Latency | 120ms |
| P95 Latency | 350ms |
| P99 Latency | 800ms |
| Max RPS Achieved | 150 |
### Observations
- [Key finding 1]
- [Key finding 2]
### Recommendations
- [Scaling recommendation]Write k6 test script with appropriate thresholds.
Set up HPA with CPU and custom metrics.
Execute test and collect metrics.
Record results in benchmark template.
| Issue | Cause | Solution |
|---|---|---|
| k6 timeout | Rate limited | Reduce RPS |
| HPA not scaling | Wrong metrics | Verify metric name |
| Connection refused | Pool exhausted | Increase pool size |
| Inconsistent results | Warm-up needed | Add ramp-up phase |
k6 run --vus 10 --duration 30s clay-load-test.jsconst metrics = await getSystemMetrics();
const capacity = estimateClayCapacity(metrics);
console.log('Headroom:', capacity.headroom + '%');
console.log('Recommendation:', capacity.scaleRecommendation);kubectl scale deployment clay-integration --replicas=5
kubectl get hpa clay-integration-hpaFor reliability patterns, see clay-reliability-patterns.