or run

tessl search
Log in

databricks-common-errors

tessl install github:jeremylongshore/claude-code-plugins-plus-skills --skill databricks-common-errors

github.com/jeremylongshore/claude-code-plugins-plus-skills

Diagnose and fix Databricks common errors and exceptions. Use when encountering Databricks errors, debugging failed jobs, or troubleshooting cluster and notebook issues. Trigger with phrases like "databricks error", "fix databricks", "databricks not working", "debug databricks", "spark error".

Review Score

89%

Validation Score

13/16

Implementation Score

88%

Activation Score

90%

Databricks Common Errors

Overview

Quick reference for the top Databricks errors and their solutions.

Prerequisites

  • Databricks CLI/SDK installed
  • API credentials configured
  • Access to cluster/job logs

Instructions

Step 1: Identify the Error

Check error message in job run output, cluster logs, or notebook cells.

Step 2: Find Matching Error Below

Match your error to one of the documented cases.

Step 3: Apply Solution

Follow the solution steps for your specific error.

Output

  • Identified error cause
  • Applied fix
  • Verified resolution

Error Handling

CLUSTER_NOT_READY

Error Message:

ClusterNotReadyException: Cluster is not in a valid state

Cause: Cluster is starting, terminating, or in error state.

Solution:

from databricks.sdk import WorkspaceClient
from databricks.sdk.service.compute import State

w = WorkspaceClient()
cluster = w.clusters.get("cluster-id")

if cluster.state in [State.PENDING, State.RESTARTING]:
    # Wait for cluster
    w.clusters.wait_get_cluster_running("cluster-id")
elif cluster.state == State.TERMINATED:
    # Start cluster
    w.clusters.start("cluster-id")
    w.clusters.wait_get_cluster_running("cluster-id")
elif cluster.state == State.ERROR:
    # Check termination reason
    print(f"Error: {cluster.termination_reason}")

SPARK_DRIVER_OOM (Out of Memory)

Error Message:

java.lang.OutOfMemoryError: Java heap space
SparkException: Job aborted due to stage failure

Cause: Driver or executor running out of memory.

Solution:

# Increase driver memory in cluster config
{
    "spark.driver.memory": "8g",
    "spark.executor.memory": "8g",
    "spark.sql.shuffle.partitions": "200"
}

# Or use more efficient operations
# WRONG: collect() on large data
all_data = df.collect()  # DON'T DO THIS

# RIGHT: process in chunks or use distributed operations
df.write.format("delta").save("/path")  # Keep data distributed

DELTA_CONCURRENT_WRITE

Error Message:

ConcurrentAppendException: Files were added by a concurrent update
ConcurrentDeleteReadException: A concurrent operation modified files

Cause: Multiple jobs writing to same Delta table simultaneously.

Solution:

# Option 1: Retry with isolation level
df.write \
    .format("delta") \
    .option("isolationLevel", "Serializable") \
    .mode("append") \
    .save("/path")

# Option 2: Use merge with retry logic
from delta.tables import DeltaTable
import time

def merge_with_retry(source_df, target_path, merge_condition, retries=3):
    for attempt in range(retries):
        try:
            delta_table = DeltaTable.forPath(spark, target_path)
            delta_table.alias("t").merge(
                source_df.alias("s"),
                merge_condition
            ).whenMatchedUpdateAll().whenNotMatchedInsertAll().execute()
            return
        except Exception as e:
            if "Concurrent" in str(e) and attempt < retries - 1:
                time.sleep(2 ** attempt)
                continue
            raise

PERMISSION_DENIED

Error Message:

PermissionDeniedException: User does not have permission
PERMISSION_DENIED: User does not have READ on table

Cause: Missing Unity Catalog or workspace permissions.

Solution:

-- Grant table permissions (Unity Catalog)
GRANT SELECT ON TABLE catalog.schema.table TO `user@company.com`;
GRANT ALL PRIVILEGES ON SCHEMA catalog.schema TO `data-team`;

-- Check current permissions
SHOW GRANTS ON TABLE catalog.schema.table;

-- For workspace objects (Admin required)
databricks permissions update jobs --job-id 123 --json '{
  "access_control_list": [{
    "user_name": "user@company.com",
    "permission_level": "CAN_MANAGE_RUN"
  }]
}'

INVALID_PARAMETER_VALUE

Error Message:

InvalidParameterValue: Instance type not supported
Invalid Spark version

Cause: Wrong cluster configuration for workspace/cloud.

Solution:

# Get valid node types for your workspace
w = WorkspaceClient()
node_types = list(w.clusters.list_node_types())
for nt in node_types[:5]:
    print(f"{nt.node_type_id}: {nt.memory_mb}MB, {nt.num_cores} cores")

# Get valid Spark versions
versions = list(w.clusters.spark_versions())
for v in versions[:5]:
    print(v.key)

SCHEMA_MISMATCH

Error Message:

AnalysisException: Cannot merge incompatible data types
Delta table schema does not match

Cause: Source data schema doesn't match target table.

Solution:

# Option 1: Enable schema evolution
df.write \
    .format("delta") \
    .option("mergeSchema", "true") \
    .mode("append") \
    .save("/path")

# Option 2: Explicit schema alignment
from pyspark.sql.types import StructType, StructField, StringType, IntegerType

target_schema = spark.table("target_table").schema

# Cast columns to match
for field in target_schema:
    if field.name in df.columns:
        df = df.withColumn(field.name, col(field.name).cast(field.dataType))

# Option 3: Check differences before write
source_cols = set(df.columns)
target_cols = set(spark.table("target").columns)
print(f"Missing in source: {target_cols - source_cols}")
print(f"Extra in source: {source_cols - target_cols}")

RATE_LIMIT_EXCEEDED

Error Message:

RateLimitExceeded: Too many requests
HTTP 429: Rate limit exceeded

Cause: Too many API calls in short period.

Solution:

# See databricks-rate-limits skill for full implementation
from databricks.sdk.errors import TooManyRequests
import time

def api_call_with_backoff(operation, max_retries=5):
    for attempt in range(max_retries):
        try:
            return operation()
        except TooManyRequests:
            delay = 2 ** attempt
            print(f"Rate limited, waiting {delay}s...")
            time.sleep(delay)
    raise Exception("Max retries exceeded")

JOB_RUN_FAILED

Error Message:

RunState: FAILED
Run terminated with error: Task failed with error

Cause: Various - check run details for specific error.

Solution:

# Get detailed run info
databricks runs get --run-id 12345

# Get run output (stdout/stderr)
databricks runs get-output --run-id 12345

# Common fixes by task type:
# - Notebook: Check cell output for exception
# - Python: Check stderr for traceback
# - JAR: Check cluster driver logs
# - SQL: Check query execution details
# Programmatic debugging
w = WorkspaceClient()
run = w.jobs.get_run(run_id=12345)

print(f"State: {run.state.life_cycle_state}")
print(f"Result: {run.state.result_state}")
print(f"Message: {run.state.state_message}")

for task in run.tasks:
    print(f"Task {task.task_key}: {task.state.result_state}")
    if task.state.result_state == "FAILED":
        output = w.jobs.get_run_output(task.run_id)
        print(f"Error: {output.error}")

Examples

Quick Diagnostic Commands

# Check cluster status
databricks clusters get --cluster-id abc123

# Get recent job runs
databricks runs list --job-id 456 --limit 5

# Check workspace permissions
databricks permissions get jobs --job-id 456

# Validate cluster config
databricks clusters create --json '{"cluster_name":"test",...}' --dry-run

Escalation Path

  1. Collect evidence with databricks-debug-bundle
  2. Check Databricks Status
  3. Search Databricks Community
  4. Contact support with workspace ID and request ID

Resources

Next Steps

For comprehensive debugging, see databricks-debug-bundle.