CtrlK
CommunityDocumentationLog inGet started
Tessl Logo

documenso-performance-tuning

tessl install github:jeremylongshore/claude-code-plugins-plus-skills --skill documenso-performance-tuning
github.com/jeremylongshore/claude-code-plugins-plus-skills

Optimize Documenso integration performance with caching, batching, and efficient patterns. Use when improving response times, reducing API calls, or optimizing bulk document operations. Trigger with phrases like "documenso performance", "optimize documenso", "documenso caching", "documenso batch operations".

Review Score

78%

Validation Score

12/16

Implementation Score

65%

Activation Score

90%

Documenso Performance Tuning

Overview

Optimize Documenso integrations for speed, efficiency, and scalability.

Prerequisites

  • Working Documenso integration
  • Performance monitoring in place
  • Redis or caching layer (recommended)

Caching Strategies

Step 1: Document Metadata Cache

import Redis from "ioredis";

const redis = new Redis(process.env.REDIS_URL);
const CACHE_TTL = 300; // 5 minutes

interface CachedDocument {
  id: string;
  title: string;
  status: string;
  recipientCount: number;
  cachedAt: string;
}

async function getDocumentCached(
  documentId: string
): Promise<CachedDocument | null> {
  // Try cache first
  const cacheKey = `doc:${documentId}`;
  const cached = await redis.get(cacheKey);

  if (cached) {
    return JSON.parse(cached);
  }

  // Fetch from API
  const client = getDocumensoClient();
  const doc = await client.documents.getV0({ documentId });

  // Cache the result
  const cacheData: CachedDocument = {
    id: doc.id!,
    title: doc.title!,
    status: doc.status!,
    recipientCount: doc.recipients?.length ?? 0,
    cachedAt: new Date().toISOString(),
  };

  await redis.setex(cacheKey, CACHE_TTL, JSON.stringify(cacheData));

  return cacheData;
}

// Invalidate cache on webhook events
async function invalidateDocumentCache(documentId: string): Promise<void> {
  await redis.del(`doc:${documentId}`);
}

Step 2: Template Cache

// Templates change rarely - longer TTL
const TEMPLATE_CACHE_TTL = 3600; // 1 hour

async function getTemplateCached(templateId: string) {
  const cacheKey = `tmpl:${templateId}`;
  const cached = await redis.get(cacheKey);

  if (cached) {
    return JSON.parse(cached);
  }

  const client = getDocumensoClient();
  const template = await client.templates.getV0({ templateId });

  await redis.setex(cacheKey, TEMPLATE_CACHE_TTL, JSON.stringify(template));

  return template;
}

// Bulk cache templates on startup
async function warmTemplateCache(templateIds: string[]): Promise<void> {
  const client = getDocumensoClient();

  console.log(`Warming cache for ${templateIds.length} templates...`);

  for (const templateId of templateIds) {
    try {
      await getTemplateCached(templateId);
    } catch (error) {
      console.warn(`Failed to cache template ${templateId}`);
    }
  }
}

Batch Operations

Step 3: Batch Document Creation

import PQueue from "p-queue";

interface DocumentInput {
  title: string;
  templateId: string;
  recipients: Array<{ email: string; name: string }>;
}

async function batchCreateDocuments(
  inputs: DocumentInput[]
): Promise<Map<string, string>> {
  const results = new Map<string, string>(); // title -> documentId

  // Queue with rate limiting
  const queue = new PQueue({
    concurrency: 3,
    interval: 1000,
    intervalCap: 5,
  });

  // Process in batches
  const promises = inputs.map((input) =>
    queue.add(async () => {
      const envelope = await client.envelopes.useV0({
        templateId: input.templateId,
        title: input.title,
        recipients: input.recipients.map((r, i) => ({
          email: r.email,
          name: r.name,
          signerIndex: i,
        })),
      });

      results.set(input.title, envelope.envelopeId!);
      return envelope;
    })
  );

  await Promise.all(promises);

  return results;
}

Step 4: Batch Recipient Updates

// Use bulk API when available
async function addRecipientsBatch(
  documentId: string,
  recipients: Array<{ email: string; name: string; role: string }>
): Promise<string[]> {
  // Use createManyV0 for batch creation
  const result = await client.documentsRecipients.createManyV0({
    documentId,
    recipients: recipients.map((r) => ({
      email: r.email,
      name: r.name,
      role: r.role as any,
    })),
  });

  return result.recipientIds ?? [];
}

Connection Pooling

Step 5: HTTP Client Optimization

import { Documenso } from "@documenso/sdk-typescript";

// Reuse client instance (connection pooling is handled internally)
let clientInstance: Documenso | null = null;

export function getDocumensoClient(): Documenso {
  if (!clientInstance) {
    clientInstance = new Documenso({
      apiKey: process.env.DOCUMENSO_API_KEY ?? "",
      // SDK handles connection pooling internally
      timeoutMs: 30000,
      retryConfig: {
        strategy: "backoff",
        backoff: {
          initialInterval: 500,
          maxInterval: 30000,
          exponent: 1.5,
          maxElapsedTime: 120000,
        },
        retryConnectionErrors: true,
      },
    });
  }
  return clientInstance;
}

Response Size Optimization

Step 6: Pagination for Large Lists

// Efficient pagination
async function* iterateDocuments(
  pageSize = 100
): AsyncGenerator<DocumentInfo[]> {
  let page = 1;
  let hasMore = true;

  while (hasMore) {
    const result = await client.documents.findV0({
      page,
      perPage: pageSize,
    });

    const docs = result.documents ?? [];

    if (docs.length > 0) {
      yield docs;
    }

    hasMore = docs.length === pageSize;
    page++;
  }
}

// Usage
async function processAllDocuments() {
  for await (const batch of iterateDocuments(100)) {
    console.log(`Processing ${batch.length} documents...`);
    await processBatch(batch);
  }
}

Step 7: Field Selection (When Available)

// Request only needed fields to reduce payload size
// Note: Check SDK for field selection support
async function getDocumentStatus(documentId: string) {
  const doc = await client.documents.getV0({ documentId });

  // Extract only what's needed
  return {
    id: doc.id,
    status: doc.status,
    completedAt: doc.completedAt,
  };
}

Async Processing

Step 8: Background Job Queue

import Bull from "bull";

const documentQueue = new Bull("document-processing", {
  redis: process.env.REDIS_URL,
});

// Add job instead of processing synchronously
async function createDocumentAsync(input: DocumentInput): Promise<string> {
  const job = await documentQueue.add("create-document", input, {
    attempts: 3,
    backoff: { type: "exponential", delay: 1000 },
  });

  return job.id.toString();
}

// Process jobs in background
documentQueue.process("create-document", async (job) => {
  const { title, templateId, recipients } = job.data;

  const envelope = await client.envelopes.useV0({
    templateId,
    title,
    recipients: recipients.map((r: any, i: number) => ({
      email: r.email,
      name: r.name,
      signerIndex: i,
    })),
  });

  return { documentId: envelope.envelopeId };
});

Performance Monitoring

Step 9: Request Timing

class PerformanceMonitor {
  private timings: number[] = [];

  async track<T>(operation: () => Promise<T>): Promise<T> {
    const start = Date.now();
    try {
      return await operation();
    } finally {
      const duration = Date.now() - start;
      this.timings.push(duration);

      // Keep last 1000 timings
      if (this.timings.length > 1000) {
        this.timings = this.timings.slice(-1000);
      }
    }
  }

  getMetrics() {
    const sorted = [...this.timings].sort((a, b) => a - b);
    return {
      count: this.timings.length,
      p50: sorted[Math.floor(sorted.length * 0.5)] ?? 0,
      p95: sorted[Math.floor(sorted.length * 0.95)] ?? 0,
      p99: sorted[Math.floor(sorted.length * 0.99)] ?? 0,
      avg:
        this.timings.reduce((a, b) => a + b, 0) / this.timings.length || 0,
    };
  }
}

const perfMonitor = new PerformanceMonitor();

// Wrap API calls
async function getDocumentTimed(documentId: string) {
  return perfMonitor.track(() =>
    client.documents.getV0({ documentId })
  );
}

Performance Checklist

  • Caching implemented for frequently accessed data
  • Batch operations used where available
  • Connection pooling via singleton client
  • Pagination for large result sets
  • Background processing for non-blocking operations
  • Request timing and monitoring in place
  • Rate limiting prevents API throttling
  • Cache invalidation on webhook events

Output

  • Reduced API latency with caching
  • Efficient bulk operations
  • Background processing configured
  • Performance metrics available

Error Handling

Performance IssueCauseSolution
Slow responsesNo cachingAdd caching layer
Rate limitsToo many requestsUse queue/batching
Memory issuesLarge responsesUse pagination
Timeout errorsSlow processingUse background jobs

Resources

  • Redis Caching
  • Bull Queue
  • p-queue

Next Steps

For cost optimization, see documenso-cost-tuning.