tessl install github:jeremylongshore/claude-code-plugins-plus-skills --skill exa-load-scaleImplement Exa load testing, auto-scaling, and capacity planning strategies. Use when running performance tests, configuring horizontal scaling, or planning capacity for Exa integrations. Trigger with phrases like "exa load test", "exa scale", "exa performance test", "exa capacity", "exa k6", "exa benchmark".
Review Score
78%
Validation Score
12/16
Implementation Score
65%
Activation Score
90%
Load testing, scaling strategies, and capacity planning for Exa integrations.
// exa-load-test.js
import http from 'k6/http';
import { check, sleep } from 'k6';
export const options = {
stages: [
{ duration: '2m', target: 10 }, // Ramp up
{ duration: '5m', target: 10 }, // Steady state
{ duration: '2m', target: 50 }, // Ramp to peak
{ duration: '5m', target: 50 }, // Stress test
{ duration: '2m', target: 0 }, // Ramp down
],
thresholds: {
http_req_duration: ['p(95)<500'],
http_req_failed: ['rate<0.01'],
},
};
export default function () {
const response = http.post(
'https://api.exa.com/v1/resource',
JSON.stringify({ test: true }),
{
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${__ENV.EXA_API_KEY}`,
},
}
);
check(response, {
'status is 200': (r) => r.status === 200,
'latency < 500ms': (r) => r.timings.duration < 500,
});
sleep(1);
}# Install k6
brew install k6 # macOS
# or: sudo apt install k6 # Linux
# Run test
k6 run --env EXA_API_KEY=${EXA_API_KEY} exa-load-test.js
# Run with output to InfluxDB
k6 run --out influxdb=http://localhost:8086/k6 exa-load-test.js# kubernetes HPA
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: exa-integration-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: exa-integration
minReplicas: 2
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Pods
pods:
metric:
name: exa_queue_depth
target:
type: AverageValue
averageValue: 100import { Pool } from 'generic-pool';
const exaPool = Pool.create({
create: async () => {
return new ExaClient({
apiKey: process.env.EXA_API_KEY!,
});
},
destroy: async (client) => {
await client.close();
},
max: 20,
min: 5,
idleTimeoutMillis: 30000,
});
async function withExaClient<T>(
fn: (client: ExaClient) => Promise<T>
): Promise<T> {
const client = await exaPool.acquire();
try {
return await fn(client);
} finally {
exaPool.release(client);
}
}| Metric | Warning | Critical |
|---|---|---|
| CPU Utilization | > 70% | > 85% |
| Memory Usage | > 75% | > 90% |
| Request Queue Depth | > 100 | > 500 |
| Error Rate | > 1% | > 5% |
| P95 Latency | > 1000ms | > 3000ms |
interface CapacityEstimate {
currentRPS: number;
maxRPS: number;
headroom: number;
scaleRecommendation: string;
}
function estimateExaCapacity(
metrics: SystemMetrics
): CapacityEstimate {
const currentRPS = metrics.requestsPerSecond;
const avgLatency = metrics.p50Latency;
const cpuUtilization = metrics.cpuPercent;
// Estimate max RPS based on current performance
const maxRPS = currentRPS / (cpuUtilization / 100) * 0.7; // 70% target
const headroom = ((maxRPS - currentRPS) / currentRPS) * 100;
return {
currentRPS,
maxRPS: Math.floor(maxRPS),
headroom: Math.round(headroom),
scaleRecommendation: headroom < 30
? 'Scale up soon'
: headroom < 50
? 'Monitor closely'
: 'Adequate capacity',
};
}## Exa Performance Benchmark
**Date:** YYYY-MM-DD
**Environment:** [staging/production]
**SDK Version:** X.Y.Z
### Test Configuration
- Duration: 10 minutes
- Ramp: 10 → 100 → 10 VUs
- Target endpoint: /v1/resource
### Results
| Metric | Value |
|--------|-------|
| Total Requests | 50,000 |
| Success Rate | 99.9% |
| P50 Latency | 120ms |
| P95 Latency | 350ms |
| P99 Latency | 800ms |
| Max RPS Achieved | 150 |
### Observations
- [Key finding 1]
- [Key finding 2]
### Recommendations
- [Scaling recommendation]Write k6 test script with appropriate thresholds.
Set up HPA with CPU and custom metrics.
Execute test and collect metrics.
Record results in benchmark template.
| Issue | Cause | Solution |
|---|---|---|
| k6 timeout | Rate limited | Reduce RPS |
| HPA not scaling | Wrong metrics | Verify metric name |
| Connection refused | Pool exhausted | Increase pool size |
| Inconsistent results | Warm-up needed | Add ramp-up phase |
k6 run --vus 10 --duration 30s exa-load-test.jsconst metrics = await getSystemMetrics();
const capacity = estimateExaCapacity(metrics);
console.log('Headroom:', capacity.headroom + '%');
console.log('Recommendation:', capacity.scaleRecommendation);kubectl scale deployment exa-integration --replicas=5
kubectl get hpa exa-integration-hpaFor reliability patterns, see exa-reliability-patterns.