tessl install github:jeremylongshore/claude-code-plugins-plus-skills --skill firecrawl-load-scaleImplement FireCrawl load testing, auto-scaling, and capacity planning strategies. Use when running performance tests, configuring horizontal scaling, or planning capacity for FireCrawl integrations. Trigger with phrases like "firecrawl load test", "firecrawl scale", "firecrawl performance test", "firecrawl capacity", "firecrawl k6", "firecrawl benchmark".
Review Score
78%
Validation Score
12/16
Implementation Score
65%
Activation Score
90%
Load testing, scaling strategies, and capacity planning for FireCrawl integrations.
// firecrawl-load-test.js
import http from 'k6/http';
import { check, sleep } from 'k6';
export const options = {
stages: [
{ duration: '2m', target: 10 }, // Ramp up
{ duration: '5m', target: 10 }, // Steady state
{ duration: '2m', target: 50 }, // Ramp to peak
{ duration: '5m', target: 50 }, // Stress test
{ duration: '2m', target: 0 }, // Ramp down
],
thresholds: {
http_req_duration: ['p(95)<500'],
http_req_failed: ['rate<0.01'],
},
};
export default function () {
const response = http.post(
'https://api.firecrawl.com/v1/resource',
JSON.stringify({ test: true }),
{
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${__ENV.FIRECRAWL_API_KEY}`,
},
}
);
check(response, {
'status is 200': (r) => r.status === 200,
'latency < 500ms': (r) => r.timings.duration < 500,
});
sleep(1);
}# Install k6
brew install k6 # macOS
# or: sudo apt install k6 # Linux
# Run test
k6 run --env FIRECRAWL_API_KEY=${FIRECRAWL_API_KEY} firecrawl-load-test.js
# Run with output to InfluxDB
k6 run --out influxdb=http://localhost:8086/k6 firecrawl-load-test.js# kubernetes HPA
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: firecrawl-integration-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: firecrawl-integration
minReplicas: 2
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Pods
pods:
metric:
name: firecrawl_queue_depth
target:
type: AverageValue
averageValue: 100import { Pool } from 'generic-pool';
const firecrawlPool = Pool.create({
create: async () => {
return new FireCrawlClient({
apiKey: process.env.FIRECRAWL_API_KEY!,
});
},
destroy: async (client) => {
await client.close();
},
max: 20,
min: 5,
idleTimeoutMillis: 30000,
});
async function withFireCrawlClient<T>(
fn: (client: FireCrawlClient) => Promise<T>
): Promise<T> {
const client = await firecrawlPool.acquire();
try {
return await fn(client);
} finally {
firecrawlPool.release(client);
}
}| Metric | Warning | Critical |
|---|---|---|
| CPU Utilization | > 70% | > 85% |
| Memory Usage | > 75% | > 90% |
| Request Queue Depth | > 100 | > 500 |
| Error Rate | > 1% | > 5% |
| P95 Latency | > 1000ms | > 3000ms |
interface CapacityEstimate {
currentRPS: number;
maxRPS: number;
headroom: number;
scaleRecommendation: string;
}
function estimateFireCrawlCapacity(
metrics: SystemMetrics
): CapacityEstimate {
const currentRPS = metrics.requestsPerSecond;
const avgLatency = metrics.p50Latency;
const cpuUtilization = metrics.cpuPercent;
// Estimate max RPS based on current performance
const maxRPS = currentRPS / (cpuUtilization / 100) * 0.7; // 70% target
const headroom = ((maxRPS - currentRPS) / currentRPS) * 100;
return {
currentRPS,
maxRPS: Math.floor(maxRPS),
headroom: Math.round(headroom),
scaleRecommendation: headroom < 30
? 'Scale up soon'
: headroom < 50
? 'Monitor closely'
: 'Adequate capacity',
};
}## FireCrawl Performance Benchmark
**Date:** YYYY-MM-DD
**Environment:** [staging/production]
**SDK Version:** X.Y.Z
### Test Configuration
- Duration: 10 minutes
- Ramp: 10 → 100 → 10 VUs
- Target endpoint: /v1/resource
### Results
| Metric | Value |
|--------|-------|
| Total Requests | 50,000 |
| Success Rate | 99.9% |
| P50 Latency | 120ms |
| P95 Latency | 350ms |
| P99 Latency | 800ms |
| Max RPS Achieved | 150 |
### Observations
- [Key finding 1]
- [Key finding 2]
### Recommendations
- [Scaling recommendation]Write k6 test script with appropriate thresholds.
Set up HPA with CPU and custom metrics.
Execute test and collect metrics.
Record results in benchmark template.
| Issue | Cause | Solution |
|---|---|---|
| k6 timeout | Rate limited | Reduce RPS |
| HPA not scaling | Wrong metrics | Verify metric name |
| Connection refused | Pool exhausted | Increase pool size |
| Inconsistent results | Warm-up needed | Add ramp-up phase |
k6 run --vus 10 --duration 30s firecrawl-load-test.jsconst metrics = await getSystemMetrics();
const capacity = estimateFireCrawlCapacity(metrics);
console.log('Headroom:', capacity.headroom + '%');
console.log('Recommendation:', capacity.scaleRecommendation);kubectl scale deployment firecrawl-integration --replicas=5
kubectl get hpa firecrawl-integration-hpaFor reliability patterns, see firecrawl-reliability-patterns.