or run

tessl search
Log in

langchain-prod-checklist

tessl install github:jeremylongshore/claude-code-plugins-plus-skills --skill langchain-prod-checklist

github.com/jeremylongshore/claude-code-plugins-plus-skills

Execute LangChain production deployment checklist. Use when preparing for production launch, validating deployment readiness, or auditing existing production LangChain applications. Trigger with phrases like "langchain production", "langchain prod ready", "deploy langchain", "langchain launch checklist", "production checklist".

Review Score

88%

Validation Score

12/16

Implementation Score

88%

Activation Score

90%

LangChain Production Checklist

Overview

Comprehensive checklist for deploying LangChain applications to production with reliability, security, and performance.

Prerequisites

  • LangChain application developed and tested
  • Infrastructure provisioned
  • CI/CD pipeline configured

Production Checklist

1. Configuration & Secrets

  • All API keys in secrets manager (not env vars in code)
  • Environment-specific configurations separated
  • Fallback values for non-critical settings
  • Configuration validation on startup
from pydantic_settings import BaseSettings
from pydantic import Field, SecretStr

class Settings(BaseSettings):
    """Validated configuration."""
    openai_api_key: SecretStr = Field(..., env="OPENAI_API_KEY")
    model_name: str = "gpt-4o-mini"
    max_retries: int = Field(default=3, ge=1, le=10)
    timeout_seconds: int = Field(default=30, ge=5, le=120)

    class Config:
        env_file = ".env"

settings = Settings()  # Validates on import

2. Error Handling & Resilience

  • Retry logic with exponential backoff
  • Fallback models configured
  • Circuit breaker for cascading failures
  • Graceful degradation strategy
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic

primary = ChatOpenAI(model="gpt-4o-mini", max_retries=3)
fallback = ChatAnthropic(model="claude-3-5-sonnet-20241022")

robust_llm = primary.with_fallbacks([fallback])

3. Observability

  • Structured logging configured
  • Metrics collection enabled
  • Distributed tracing (LangSmith or OpenTelemetry)
  • Alerting rules defined
import os

# LangSmith tracing
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = settings.langsmith_api_key
os.environ["LANGCHAIN_PROJECT"] = "production"

# Prometheus metrics
from prometheus_client import Counter, Histogram

llm_requests = Counter("langchain_llm_requests_total", "Total LLM requests")
llm_latency = Histogram("langchain_llm_latency_seconds", "LLM latency")

4. Performance

  • Caching configured for repeated queries
  • Connection pooling enabled
  • Timeout limits set
  • Batch processing for bulk operations
from langchain_core.globals import set_llm_cache
from langchain_community.cache import RedisCache
import redis

# Production caching with Redis
redis_client = redis.Redis.from_url(os.environ["REDIS_URL"])
set_llm_cache(RedisCache(redis_client))

5. Security

  • Input validation implemented
  • Output sanitization enabled
  • Rate limiting per user/IP
  • Audit logging for all LLM calls
from langchain_core.runnables import RunnableLambda

def validate_input(input_data: dict) -> dict:
    """Validate and sanitize input."""
    user_input = input_data.get("input", "")
    if len(user_input) > 10000:
        raise ValueError("Input too long")
    return input_data

secure_chain = RunnableLambda(validate_input) | prompt | llm

6. Testing

  • Unit tests for all chains
  • Integration tests with mock LLMs
  • Load tests completed
  • Chaos engineering (failure injection)
# pytest.ini
[pytest]
markers =
    unit: Unit tests
    integration: Integration tests
    load: Load tests

7. Deployment

  • Health check endpoint
  • Graceful shutdown handling
  • Rolling deployment strategy
  • Rollback procedure documented
from fastapi import FastAPI
from contextlib import asynccontextmanager

@asynccontextmanager
async def lifespan(app: FastAPI):
    # Startup
    print("Warming up LLM connections...")
    yield
    # Shutdown
    print("Cleaning up...")

app = FastAPI(lifespan=lifespan)

@app.get("/health")
async def health_check():
    return {"status": "healthy", "model": settings.model_name}

8. Cost Management

  • Token counting implemented
  • Usage alerts configured
  • Cost allocation by tenant/feature
  • Budget limits enforced
import tiktoken

def estimate_cost(text: str, model: str = "gpt-4o-mini") -> float:
    """Estimate API cost for text."""
    encoding = tiktoken.encoding_for_model(model)
    tokens = len(encoding.encode(text))
    # Approximate pricing (check current rates)
    cost_per_1k = {"gpt-4o-mini": 0.00015, "gpt-4o": 0.005}
    return (tokens / 1000) * cost_per_1k.get(model, 0.001)

Deployment Validation Script

#!/usr/bin/env python3
"""Pre-deployment validation script."""

def run_checks():
    checks = []

    # Check 1: API key configured
    try:
        settings = Settings()
        checks.append(("API Key", "PASS"))
    except Exception as e:
        checks.append(("API Key", f"FAIL: {e}"))

    # Check 2: LLM connectivity
    try:
        llm = ChatOpenAI(model="gpt-4o-mini")
        llm.invoke("test")
        checks.append(("LLM Connection", "PASS"))
    except Exception as e:
        checks.append(("LLM Connection", f"FAIL: {e}"))

    # Check 3: Cache connectivity
    try:
        redis_client.ping()
        checks.append(("Cache (Redis)", "PASS"))
    except Exception as e:
        checks.append(("Cache (Redis)", f"FAIL: {e}"))

    for name, status in checks:
        print(f"[{status}] {name}")

    return all("PASS" in status for _, status in checks)

if __name__ == "__main__":
    exit(0 if run_checks() else 1)

Resources

  • LangChain Production Guide
  • LangSmith
  • Twelve-Factor App

Next Steps

After launch, use langchain-observability for monitoring.