tessl install github:jeremylongshore/claude-code-plugins-plus-skills --skill langfuse-core-workflow-aExecute Langfuse primary workflow: Tracing LLM calls and spans. Use when implementing LLM tracing, building traced AI features, or adding observability to existing LLM applications. Trigger with phrases like "langfuse tracing", "trace LLM calls", "add langfuse to openai", "langfuse spans", "track llm requests".
Review Score
84%
Validation Score
12/16
Implementation Score
77%
Activation Score
90%
Primary workflow for Langfuse: end-to-end tracing of LLM calls, chains, and agents.
langfuse-install-auth setupimport { observeOpenAI } from "langfuse";
import OpenAI from "openai";
// Wrap OpenAI client for automatic tracing
const openai = observeOpenAI(new OpenAI());
// All calls are now automatically traced
const response = await openai.chat.completions.create({
model: "gpt-4",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{ role: "user", content: "What is Langfuse?" },
],
});import { Langfuse } from "langfuse";
const langfuse = new Langfuse();
async function ragPipeline(query: string) {
// Create top-level trace
const trace = langfuse.trace({
name: "rag-pipeline",
input: { query },
metadata: { pipeline: "rag-v1" },
});
// Span: Query embedding
const embedSpan = trace.span({
name: "embed-query",
input: { text: query },
});
const queryEmbedding = await embedText(query);
embedSpan.end({
output: { dimensions: queryEmbedding.length },
metadata: { model: "text-embedding-ada-002" },
});
// Span: Vector search
const searchSpan = trace.span({
name: "vector-search",
input: { embedding: "vector[1536]" },
});
const documents = await searchVectorDB(queryEmbedding);
searchSpan.end({
output: {
documentCount: documents.length,
topScore: documents[0]?.score,
},
});
// Generation: LLM call with context
const generation = trace.generation({
name: "generate-answer",
model: "gpt-4",
modelParameters: { temperature: 0.7, maxTokens: 500 },
input: {
query,
context: documents.map((d) => d.content),
},
});
const answer = await generateAnswer(query, documents);
generation.end({
output: answer.content,
usage: {
promptTokens: answer.usage.prompt_tokens,
completionTokens: answer.usage.completion_tokens,
totalTokens: answer.usage.total_tokens,
},
});
// Update trace with final output
trace.update({
output: { answer: answer.content },
});
return answer.content;
}async function streamingChat(messages: ChatMessage[]) {
const trace = langfuse.trace({
name: "streaming-chat",
input: { messages },
});
const generation = trace.generation({
name: "stream-response",
model: "gpt-4",
input: messages,
});
const stream = await openai.chat.completions.create({
model: "gpt-4",
messages,
stream: true,
});
let fullContent = "";
let usage = { promptTokens: 0, completionTokens: 0 };
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content || "";
fullContent += content;
// Track usage from final chunk
if (chunk.usage) {
usage = {
promptTokens: chunk.usage.prompt_tokens,
completionTokens: chunk.usage.completion_tokens,
};
}
yield content;
}
// End generation after stream completes
generation.end({
output: fullContent,
usage,
});
trace.update({ output: { response: fullContent } });
}// API endpoint that creates parent trace
async function handleChatRequest(req: Request) {
const trace = langfuse.trace({
name: "api/chat",
userId: req.userId,
sessionId: req.sessionId,
input: req.body,
});
// Pass trace to child operations
const response = await processChat(trace, req.body.message);
return response;
}
// Child function receives parent trace
async function processChat(
parentTrace: ReturnType<typeof langfuse.trace>,
message: string
) {
// Create child span under parent trace
const span = parentTrace.span({
name: "process-chat",
input: { message },
});
// OpenAI call linked to parent
const response = await openai.chat.completions.create(
{
model: "gpt-4",
messages: [{ role: "user", content: message }],
},
{ langfuseParent: span } // Link generation to span
);
span.end({ output: response.choices[0].message });
return response.choices[0].message.content;
}| Issue | Cause | Solution |
|---|---|---|
| Missing generations | Wrapper not applied | Use observeOpenAI() wrapper |
| Orphaned spans | Missing .end() call | Always end spans in finally block |
| No token usage | Stream without usage | Use stream_options: {include_usage: true} |
| Broken hierarchy | Missing parent link | Pass langfuseParent option |
import Anthropic from "@anthropic-ai/sdk";
import { Langfuse } from "langfuse";
const anthropic = new Anthropic();
const langfuse = new Langfuse();
async function callClaude(prompt: string) {
const trace = langfuse.trace({ name: "claude-call", input: { prompt } });
const generation = trace.generation({
name: "claude-response",
model: "claude-3-sonnet-20240229",
input: [{ role: "user", content: prompt }],
});
const response = await anthropic.messages.create({
model: "claude-3-sonnet-20240229",
max_tokens: 1024,
messages: [{ role: "user", content: prompt }],
});
generation.end({
output: response.content[0].text,
usage: {
promptTokens: response.usage.input_tokens,
completionTokens: response.usage.output_tokens,
},
});
return response.content[0].text;
}from langchain.callbacks import LangfuseCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
# Create callback handler
langfuse_handler = LangfuseCallbackHandler()
# Pass to LLM
llm = ChatOpenAI(callbacks=[langfuse_handler])
# All LangChain operations are now traced
response = llm([HumanMessage(content="Hello!")])async function tracedToolCall(trace: Trace, toolName: string, args: any) {
const span = trace.span({
name: `tool/${toolName}`,
input: args,
metadata: { type: "tool-call" },
});
try {
const result = await executeTool(toolName, args);
span.end({ output: result });
return result;
} catch (error) {
span.end({
level: "ERROR",
statusMessage: String(error),
});
throw error;
}
}For evaluation and scoring workflows, see langfuse-core-workflow-b.