Ctrl + k

or run

tessl search
Log in

langfuse-core-workflow-a

tessl install github:jeremylongshore/claude-code-plugins-plus-skills --skill langfuse-core-workflow-a
github.com/jeremylongshore/claude-code-plugins-plus-skills

Execute Langfuse primary workflow: Tracing LLM calls and spans. Use when implementing LLM tracing, building traced AI features, or adding observability to existing LLM applications. Trigger with phrases like "langfuse tracing", "trace LLM calls", "add langfuse to openai", "langfuse spans", "track llm requests".

Review Score

84%

Validation Score

12/16

Implementation Score

77%

Activation Score

90%

Langfuse Core Workflow A: Tracing LLM Calls

Overview

Primary workflow for Langfuse: end-to-end tracing of LLM calls, chains, and agents.

Prerequisites

  • Completed langfuse-install-auth setup
  • Understanding of Langfuse trace hierarchy
  • LLM provider SDK (OpenAI, Anthropic, etc.)

Instructions

Step 1: Set Up Automatic OpenAI Tracing

import { observeOpenAI } from "langfuse";
import OpenAI from "openai";

// Wrap OpenAI client for automatic tracing
const openai = observeOpenAI(new OpenAI());

// All calls are now automatically traced
const response = await openai.chat.completions.create({
  model: "gpt-4",
  messages: [
    { role: "system", content: "You are a helpful assistant." },
    { role: "user", content: "What is Langfuse?" },
  ],
});

Step 2: Manual Tracing for Complex Flows

import { Langfuse } from "langfuse";

const langfuse = new Langfuse();

async function ragPipeline(query: string) {
  // Create top-level trace
  const trace = langfuse.trace({
    name: "rag-pipeline",
    input: { query },
    metadata: { pipeline: "rag-v1" },
  });

  // Span: Query embedding
  const embedSpan = trace.span({
    name: "embed-query",
    input: { text: query },
  });

  const queryEmbedding = await embedText(query);

  embedSpan.end({
    output: { dimensions: queryEmbedding.length },
    metadata: { model: "text-embedding-ada-002" },
  });

  // Span: Vector search
  const searchSpan = trace.span({
    name: "vector-search",
    input: { embedding: "vector[1536]" },
  });

  const documents = await searchVectorDB(queryEmbedding);

  searchSpan.end({
    output: {
      documentCount: documents.length,
      topScore: documents[0]?.score,
    },
  });

  // Generation: LLM call with context
  const generation = trace.generation({
    name: "generate-answer",
    model: "gpt-4",
    modelParameters: { temperature: 0.7, maxTokens: 500 },
    input: {
      query,
      context: documents.map((d) => d.content),
    },
  });

  const answer = await generateAnswer(query, documents);

  generation.end({
    output: answer.content,
    usage: {
      promptTokens: answer.usage.prompt_tokens,
      completionTokens: answer.usage.completion_tokens,
      totalTokens: answer.usage.total_tokens,
    },
  });

  // Update trace with final output
  trace.update({
    output: { answer: answer.content },
  });

  return answer.content;
}

Step 3: Trace Streaming Responses

async function streamingChat(messages: ChatMessage[]) {
  const trace = langfuse.trace({
    name: "streaming-chat",
    input: { messages },
  });

  const generation = trace.generation({
    name: "stream-response",
    model: "gpt-4",
    input: messages,
  });

  const stream = await openai.chat.completions.create({
    model: "gpt-4",
    messages,
    stream: true,
  });

  let fullContent = "";
  let usage = { promptTokens: 0, completionTokens: 0 };

  for await (const chunk of stream) {
    const content = chunk.choices[0]?.delta?.content || "";
    fullContent += content;

    // Track usage from final chunk
    if (chunk.usage) {
      usage = {
        promptTokens: chunk.usage.prompt_tokens,
        completionTokens: chunk.usage.completion_tokens,
      };
    }

    yield content;
  }

  // End generation after stream completes
  generation.end({
    output: fullContent,
    usage,
  });

  trace.update({ output: { response: fullContent } });
}

Step 4: Link Traces to Parent Operations

// API endpoint that creates parent trace
async function handleChatRequest(req: Request) {
  const trace = langfuse.trace({
    name: "api/chat",
    userId: req.userId,
    sessionId: req.sessionId,
    input: req.body,
  });

  // Pass trace to child operations
  const response = await processChat(trace, req.body.message);

  return response;
}

// Child function receives parent trace
async function processChat(
  parentTrace: ReturnType<typeof langfuse.trace>,
  message: string
) {
  // Create child span under parent trace
  const span = parentTrace.span({
    name: "process-chat",
    input: { message },
  });

  // OpenAI call linked to parent
  const response = await openai.chat.completions.create(
    {
      model: "gpt-4",
      messages: [{ role: "user", content: message }],
    },
    { langfuseParent: span } // Link generation to span
  );

  span.end({ output: response.choices[0].message });
  return response.choices[0].message.content;
}

Output

  • Automatic OpenAI tracing with zero code changes
  • Manual tracing for RAG and complex pipelines
  • Streaming response tracking
  • Linked parent-child trace hierarchy

Error Handling

IssueCauseSolution
Missing generationsWrapper not appliedUse observeOpenAI() wrapper
Orphaned spansMissing .end() callAlways end spans in finally block
No token usageStream without usageUse stream_options: {include_usage: true}
Broken hierarchyMissing parent linkPass langfuseParent option

Examples

Anthropic Claude Tracing

import Anthropic from "@anthropic-ai/sdk";
import { Langfuse } from "langfuse";

const anthropic = new Anthropic();
const langfuse = new Langfuse();

async function callClaude(prompt: string) {
  const trace = langfuse.trace({ name: "claude-call", input: { prompt } });

  const generation = trace.generation({
    name: "claude-response",
    model: "claude-3-sonnet-20240229",
    input: [{ role: "user", content: prompt }],
  });

  const response = await anthropic.messages.create({
    model: "claude-3-sonnet-20240229",
    max_tokens: 1024,
    messages: [{ role: "user", content: prompt }],
  });

  generation.end({
    output: response.content[0].text,
    usage: {
      promptTokens: response.usage.input_tokens,
      completionTokens: response.usage.output_tokens,
    },
  });

  return response.content[0].text;
}

LangChain Integration

from langchain.callbacks import LangfuseCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage

# Create callback handler
langfuse_handler = LangfuseCallbackHandler()

# Pass to LLM
llm = ChatOpenAI(callbacks=[langfuse_handler])

# All LangChain operations are now traced
response = llm([HumanMessage(content="Hello!")])

Tool/Function Calling Tracing

async function tracedToolCall(trace: Trace, toolName: string, args: any) {
  const span = trace.span({
    name: `tool/${toolName}`,
    input: args,
    metadata: { type: "tool-call" },
  });

  try {
    const result = await executeTool(toolName, args);
    span.end({ output: result });
    return result;
  } catch (error) {
    span.end({
      level: "ERROR",
      statusMessage: String(error),
    });
    throw error;
  }
}

Resources

  • Langfuse Tracing Guide
  • OpenAI Integration
  • LangChain Integration
  • Streaming Guide

Next Steps

For evaluation and scoring workflows, see langfuse-core-workflow-b.