github.com/muratcankoylan/Agent-Skills-for-Context-Engineering
Skill | Added | Review |
|---|---|---|
skill-template Template for creating new Agent Skills for context engineering. Use this template when adding new skills to the collection. | 53% | |
tool-design This skill should be used when the user asks to "design agent tools", "create tool descriptions", "reduce tool complexity", "implement MCP tools", or mentions tool consolidation, architectural reduction, tool naming conventions, or agent-tool interfaces. | 51% | |
project-development This skill should be used when the user asks to "start an LLM project", "design batch pipeline", "evaluate task-model fit", "structure agent project", or mentions pipeline architecture, agent-assisted development, cost estimation, or choosing between LLM and traditional approaches. | 64% | |
multi-agent-patterns This skill should be used when the user asks to "design multi-agent system", "implement supervisor pattern", "create swarm architecture", "coordinate multiple agents", or mentions multi-agent patterns, context isolation, agent handoffs, sub-agents, or parallel agent execution. | 58% | |
memory-systems This skill should be used when the user asks to "implement agent memory", "persist state across sessions", "build knowledge graph", "track entities", or mentions memory architecture, temporal knowledge graphs, vector stores, entity memory, or cross-session persistence. | 48% | |
hosted-agents This skill should be used when the user asks to "build background agent", "create hosted coding agent", "set up sandboxed execution", "implement multiplayer agent", or mentions background agents, sandboxed VMs, agent infrastructure, Modal sandboxes, self-spawning agents, or remote coding environments. | 57% | |
filesystem-context This skill should be used when the user asks to "offload context to files", "implement dynamic context discovery", "use filesystem for agent memory", "reduce context window bloat", or mentions file-based context management, tool output persistence, agent scratch pads, or just-in-time context loading. | 66% | |
evaluation This skill should be used when the user asks to "evaluate agent performance", "build test framework", "measure agent quality", "create evaluation rubrics", or mentions LLM-as-judge, multi-dimensional evaluation, agent testing, or quality gates for agent pipelines. | 58% | |
context-optimization This skill should be used when the user asks to "optimize context", "reduce token costs", "improve context efficiency", "implement KV-cache optimization", "partition context", or mentions context limits, observation masking, context budgeting, or extending effective context capacity. | 58% | |
context-fundamentals This skill should be used when the user asks to "understand context", "explain context windows", "design agent architecture", "debug context issues", "optimize context usage", or discusses context components, attention mechanics, progressive disclosure, or context budgeting. Provides foundational understanding of context engineering for AI agent systems. | 56% | |
context-degradation This skill should be used when the user asks to "diagnose context problems", "fix lost-in-middle issues", "debug agent failures", "understand context poisoning", or mentions context degradation, attention patterns, context clash, context confusion, or agent performance degradation. Provides patterns for recognizing and mitigating context failures. | 75% | |
context-compression This skill should be used when the user asks to "compress context", "summarize conversation history", "implement compaction", "reduce token usage", or mentions context compression, structured summarization, tokens-per-task optimization, or long-running agent sessions exceeding context limits. | 61% | |
bdi-mental-states This skill should be used when the user asks to "model agent mental states", "implement BDI architecture", "create belief-desire-intention models", "transform RDF to beliefs", "build cognitive agent", or mentions BDI ontology, mental state modeling, rational agency, or neuro-symbolic AI integration. | 71% | |
reasoning-trace-optimizer Debug and optimize AI agents by analyzing reasoning traces. Activates on 'debug agent', 'optimize prompt', 'analyze reasoning', 'why did the agent fail', 'improve agent performance', or when diagnosing agent failures and context degradation. | 82% | |
digital-brain This skill should be used when the user asks to "write a post", "check my voice", "look up contact", "prepare for meeting", "weekly review", "track goals", or mentions personal brand, content creation, network management, or voice consistency. | 55% | |
book-sft-pipeline This skill should be used when the user asks to "fine-tune on books", "create SFT dataset", "train style model", "extract ePub text", or mentions style transfer, LoRA training, book segmentation, or author voice replication. | 71% |