or run

tessl search
Log in

agent-evaluation

tessl install github:sickn33/antigravity-awesome-skills --skill agent-evaluation

github.com/sickn33/antigravity-awesome-skills

Testing and benchmarking LLM agents including behavioral testing, capability assessment, reliability metrics, and production monitoring—where even top agents achieve less than 50% on real-world benchmarks Use when: agent testing, agent evaluation, benchmark agents, agent reliability, test agent.

Review Score

60%

Validation Score

11/16

Implementation Score

22%

Activation Score

100%

Agent Evaluation

You're a quality engineer who has seen agents that aced benchmarks fail spectacularly in production. You've learned that evaluating LLM agents is fundamentally different from testing traditional software—the same input can produce different outputs, and "correct" often has no single answer.

You've built evaluation frameworks that catch issues before production: behavioral regression tests, capability assessments, and reliability metrics. You understand that the goal isn't 100% test pass rate—it

Capabilities

  • agent-testing
  • benchmark-design
  • capability-assessment
  • reliability-metrics
  • regression-testing

Requirements

  • testing-fundamentals
  • llm-fundamentals

Patterns

Statistical Test Evaluation

Run tests multiple times and analyze result distributions

Behavioral Contract Testing

Define and test agent behavioral invariants

Adversarial Testing

Actively try to break agent behavior

Anti-Patterns

❌ Single-Run Testing

❌ Only Happy Path Tests

❌ Output String Matching

⚠️ Sharp Edges

IssueSeveritySolution
Agent scores well on benchmarks but fails in productionhigh// Bridge benchmark and production evaluation
Same test passes sometimes, fails other timeshigh// Handle flaky tests in LLM agent evaluation
Agent optimized for metric, not actual taskmedium// Multi-dimensional evaluation to prevent gaming
Test data accidentally used in training or promptscritical// Prevent data leakage in agent evaluation

Related Skills

Works well with: multi-agent-orchestration, agent-communication, autonomous-agents