tessl install github:sickn33/antigravity-awesome-skills --skill ai-wrapper-productgithub.com/sickn33/antigravity-awesome-skills
Expert in building products that wrap AI APIs (OpenAI, Anthropic, etc.) into focused tools people will pay for. Not just 'ChatGPT but different' - products that solve specific problems with AI. Covers prompt engineering for products, cost management, rate limiting, and building defensible AI businesses. Use when: AI wrapper, GPT product, AI tool, wrap AI, AI SaaS.
Review Score
81%
Validation Score
12/16
Implementation Score
65%
Activation Score
100%
Role: AI Product Architect
You know AI wrappers get a bad rap, but the good ones solve real problems. You build products where AI is the engine, not the gimmick. You understand prompt engineering is product development. You balance costs with user experience. You create AI products people actually pay for and use daily.
Building products around AI APIs
When to use: When designing an AI-powered product
## AI Product Architecture
### The Wrapper StackUser Input ↓ Input Validation + Sanitization ↓ Prompt Template + Context ↓ AI API (OpenAI/Anthropic/etc.) ↓ Output Parsing + Validation ↓ User-Friendly Response
### Basic Implementation
```javascript
import Anthropic from '@anthropic-ai/sdk';
const anthropic = new Anthropic();
async function generateContent(userInput, context) {
// 1. Validate input
if (!userInput || userInput.length > 5000) {
throw new Error('Invalid input');
}
// 2. Build prompt
const systemPrompt = `You are a ${context.role}.
Always respond in ${context.format}.
Tone: ${context.tone}`;
// 3. Call API
const response = await anthropic.messages.create({
model: 'claude-3-haiku-20240307',
max_tokens: 1000,
system: systemPrompt,
messages: [{
role: 'user',
content: userInput
}]
});
// 4. Parse and validate output
const output = response.content[0].text;
return parseOutput(output);
}| Model | Cost | Speed | Quality | Use Case |
|---|---|---|---|---|
| GPT-4o | $$$ | Fast | Best | Complex tasks |
| GPT-4o-mini | $ | Fastest | Good | Most tasks |
| Claude 3.5 Sonnet | $$ | Fast | Excellent | Balanced |
| Claude 3 Haiku | $ | Fastest | Good | High volume |
### Prompt Engineering for Products
Production-grade prompt design
**When to use**: When building AI product prompts
```javascript
## Prompt Engineering for Products
### Prompt Template Pattern
```javascript
const promptTemplates = {
emailWriter: {
system: `You are an expert email writer.
Write professional, concise emails.
Match the requested tone.
Never include placeholder text.`,
user: (input) => `Write an email:
Purpose: ${input.purpose}
Recipient: ${input.recipient}
Tone: ${input.tone}
Key points: ${input.points.join(', ')}
Length: ${input.length} sentences`,
},
};// Force structured output
const systemPrompt = `
Always respond with valid JSON in this format:
{
"title": "string",
"content": "string",
"suggestions": ["string"]
}
Never include any text outside the JSON.
`;
// Parse with fallback
function parseAIOutput(text) {
try {
return JSON.parse(text);
} catch {
// Fallback: extract JSON from response
const match = text.match(/\{[\s\S]*\}/);
if (match) return JSON.parse(match[0]);
throw new Error('Invalid AI output');
}
}| Technique | Purpose |
|---|---|
| Examples in prompt | Guide output style |
| Output format spec | Consistent structure |
| Validation | Catch malformed responses |
| Retry logic | Handle failures |
| Fallback models | Reliability |
### Cost Management
Controlling AI API costs
**When to use**: When building profitable AI products
```javascript
## AI Cost Management
### Token Economics
```javascript
// Track usage
async function callWithCostTracking(userId, prompt) {
const response = await anthropic.messages.create({...});
// Log usage
await db.usage.create({
userId,
inputTokens: response.usage.input_tokens,
outputTokens: response.usage.output_tokens,
cost: calculateCost(response.usage),
model: 'claude-3-haiku',
});
return response;
}
function calculateCost(usage) {
const rates = {
'claude-3-haiku': { input: 0.25, output: 1.25 }, // per 1M tokens
};
const rate = rates['claude-3-haiku'];
return (usage.input_tokens * rate.input +
usage.output_tokens * rate.output) / 1_000_000;
}| Strategy | Savings |
|---|---|
| Use cheaper models | 10-50x |
| Limit output tokens | Variable |
| Cache common queries | High |
| Batch similar requests | Medium |
| Truncate input | Variable |
async function checkUsageLimits(userId) {
const usage = await db.usage.sum({
where: {
userId,
createdAt: { gte: startOfMonth() }
}
});
const limits = await getUserLimits(userId);
if (usage.cost >= limits.monthlyCost) {
throw new Error('Monthly limit reached');
}
return true;
}## Anti-Patterns
### ❌ Thin Wrapper Syndrome
**Why bad**: No differentiation.
Users just use ChatGPT.
No pricing power.
Easy to replicate.
**Instead**: Add domain expertise.
Perfect the UX for specific task.
Integrate into workflows.
Post-process outputs.
### ❌ Ignoring Costs Until Scale
**Why bad**: Surprise bills.
Negative unit economics.
Can't price properly.
Business isn't viable.
**Instead**: Track every API call.
Know your cost per user.
Set usage limits.
Price with margin.
### ❌ No Output Validation
**Why bad**: AI hallucinates.
Inconsistent formatting.
Bad user experience.
Trust issues.
**Instead**: Validate all outputs.
Parse structured responses.
Have fallback handling.
Post-process for consistency.
## ⚠️ Sharp Edges
| Issue | Severity | Solution |
|-------|----------|----------|
| AI API costs spiral out of control | high | ## Controlling AI Costs |
| App breaks when hitting API rate limits | high | ## Handling Rate Limits |
| AI gives wrong or made-up information | high | ## Handling Hallucinations |
| AI responses too slow for good UX | medium | ## Improving AI Latency |
## Related Skills
Works well with: `llm-architect`, `micro-saas-launcher`, `frontend`, `backend`