abstract class SparkSession extends Serializable with Closeable {
// Session properties
def sparkContext: SparkContext
def conf: RuntimeConfig
def version: String
// Data access interfaces
def read: DataFrameReader
def readStream: DataStreamReader
def streams: StreamingQueryManager
def catalog: Catalog
def udf: UDFRegistration
// SQL execution
def sql(sqlText: String): DataFrame
def table(tableName: String): DataFrame
// DataFrame/Dataset creation
def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame
def createDataFrame(rows: java.util.List[Row], schema: StructType): DataFrame
def createDataFrame[A <: Product : TypeTag](data: Seq[A]): DataFrame
def createDataset[T : Encoder](data: Seq[T]): Dataset[T]
def createDataset[T : Encoder](data: RDD[T]): Dataset[T]
def createDataset[T : Encoder](data: java.util.List[T]): Dataset[T]
// Session lifecycle
def stop(): Unit
def close(): Unit
def newSession(): SparkSession
}class Builder {
// Basic configuration
def appName(name: String): Builder
def master(master: String): Builder
def config(key: String, value: String): Builder
def config(key: String, value: Long): Builder
def config(key: String, value: Double): Builder
def config(key: String, value: Boolean): Builder
def config(conf: SparkConf): Builder
// Advanced configuration
def enableHiveSupport(): Builder
def withExtensions(f: SparkSessionExtensions => Unit): Builder
// Session creation
def getOrCreate(): SparkSession
}abstract class RuntimeConfig {
// Configuration getters
def get(key: String): String
def get(key: String, default: String): String
def getOption(key: String): Option[String]
def getAll: Map[String, String]
// Configuration setters
def set(key: String, value: String): Unit
def set(key: String, value: Boolean): Unit
def set(key: String, value: Long): Unit
// Configuration management
def unset(key: String): Unit
def isModifiable(key: String): Boolean
}class SparkConf(loadDefaults: Boolean = true) extends Cloneable with Serializable {
def set(key: String, value: String): SparkConf
def setAppName(name: String): SparkConf
def setMaster(master: String): SparkConf
def get(key: String): String
def get(key: String, defaultValue: String): String
def getOption(key: String): Option[String]
def getAll: Array[(String, String)]
def remove(key: String): SparkConf
}class SparkContext(config: SparkConf) extends Logging {
def appName: String
def applicationId: String
def master: String
def deployMode: String
def version: String
def startTime: Long
def defaultParallelism: Int
def getConf: SparkConf
def isLocal: Boolean
def isStopped: Boolean
def stop(): Unit
}import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder()
.appName("My Spark Application")
.master("local[*]")
.config("spark.sql.warehouse.dir", "/path/to/warehouse")
.getOrCreate()import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
val conf = new SparkConf()
.setAppName("Advanced Spark App")
.setMaster("yarn")
.set("spark.sql.adaptive.enabled", "true")
.set("spark.sql.adaptive.coalescePartitions.enabled", "true")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val spark = SparkSession.builder()
.config(conf)
.enableHiveSupport()
.getOrCreate()// Get current configuration
val currentWarehouse = spark.conf.get("spark.sql.warehouse.dir")
// Set configuration at runtime
spark.conf.set("spark.sql.shuffle.partitions", "200")
spark.conf.set("spark.sql.adaptive.enabled", true)
// Check if configuration can be modified
val canModify = spark.conf.isModifiable("spark.sql.shuffle.partitions")
// Get all configurations
val allConfigs = spark.conf.getAll
allConfigs.foreach { case (key, value) =>
println(s"$key = $value")
}
// Unset configuration (reset to default)
spark.conf.unset("spark.sql.shuffle.partitions")import org.apache.spark.sql.SparkSessionExtensions
val spark = SparkSession.builder()
.appName("Extended Spark Session")
.withExtensions { extensions =>
// Register custom rules, functions, etc.
extensions.injectResolutionRule { session =>
// Custom resolution rule implementation
new CustomResolutionRule(session)
}
}
.config("spark.sql.extensions", "com.example.MySparkExtension")
.getOrCreate()// Get application details
println(s"Application ID: ${spark.sparkContext.applicationId}")
println(s"Application Name: ${spark.sparkContext.appName}")
println(s"Spark Version: ${spark.version}")
println(s"Master URL: ${spark.sparkContext.master}")
println(s"Deploy Mode: ${spark.sparkContext.deployMode}")
println(s"Default Parallelism: ${spark.sparkContext.defaultParallelism}")
// Check application state
if (!spark.sparkContext.isStopped) {
println("Application is running")
}// Create primary session
val primarySpark = SparkSession.builder()
.appName("Primary Session")
.getOrCreate()
// Create isolated session with different configuration
val isolatedSpark = primarySpark.newSession()
isolatedSpark.conf.set("spark.sql.shuffle.partitions", "100")
// Both sessions share the same SparkContext but have independent configurations
println(s"Primary partitions: ${primarySpark.conf.get('spark.sql.shuffle.partitions')}")
println(s"Isolated partitions: ${isolatedSpark.conf.get('spark.sql.shuffle.partitions')}")
// Clean shutdown
isolatedSpark.close()
primarySpark.stop()import org.apache.spark.sql.SparkSession
// Production-ready configuration
val spark = SparkSession.builder()
.appName("Production Data Pipeline")
// Resource allocation
.config("spark.executor.memory", "4g")
.config("spark.executor.cores", "2")
.config("spark.executor.instances", "10")
// SQL optimizations
.config("spark.sql.adaptive.enabled", "true")
.config("spark.sql.adaptive.coalescePartitions.enabled", "true")
.config("spark.sql.adaptive.skewJoin.enabled", "true")
// Serialization
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.config("spark.sql.execution.arrow.pyspark.enabled", "true")
// Caching and checkpointing
.config("spark.sql.cache.serializer", "org.apache.spark.serializer.KryoSerializer")
.config("spark.checkpoint.compress", "true")
// Monitoring
.config("spark.sql.execution.arrow.maxRecordsPerBatch", "10000")
.config("spark.sql.sources.parallelPartitionDiscovery.threshold", "32")
.getOrCreate()
// Set runtime configurations for specific workloads
if (isLargeDataset) {
spark.conf.set("spark.sql.shuffle.partitions", "400")
} else {
spark.conf.set("spark.sql.shuffle.partitions", "200")
}