docs
evals
scenario-1
scenario-2
scenario-3
scenario-4
scenario-5
scenario-6
scenario-7
scenario-8
scenario-9
scenario-10
A utility library for counting partitions and special combinatorial sequences.
/**
* Computes the number of ways to partition n elements into k non-empty subsets.
*
* @param {number} n - The total number of elements
* @param {number} k - The number of non-empty subsets
* @returns {number} The count of ways to partition n into k subsets
* @throws {Error} If n or k is negative, or if k > n
*/
function countSetPartitions(n, k) {
// IMPLEMENTATION HERE
}
/**
* Computes the total number of ways to partition n elements.
*
* @param {number} n - The total number of elements
* @returns {number} The total count of partitions
* @throws {Error} If n is negative
*/
function countTotalPartitions(n) {
// IMPLEMENTATION HERE
}
/**
* Computes the number of structurally different binary trees with n nodes.
*
* @param {number} n - The number of nodes
* @returns {number} The count of distinct binary tree structures
* @throws {Error} If n is negative
*/
function countBinaryTrees(n) {
// IMPLEMENTATION HERE
}
module.exports = {
countSetPartitions,
countTotalPartitions,
countBinaryTrees,
};Provides advanced combinatorial functions for computing special number sequences.