or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

general-databases.mdindex.mdipac-services.mdobservatory-archives.mdsolar-system-services.mdspace-mission-archives.mdspectroscopic-databases.mdsurvey-image-services.mdvo-services.md

general-databases.mddocs/

0

# General Astronomical Databases

1

2

Core astronomical data services that provide access to fundamental astronomical catalogs, object databases, and multi-wavelength surveys. These services form the foundation of astronomical research by offering standardized access to comprehensive stellar, galactic, and extragalactic data.

3

4

## Capabilities

5

6

### SIMBAD - Astronomical Object Database

7

8

SIMBAD (Set of Identifications, Measurements and Bibliography for Astronomical Data) provides comprehensive information about astronomical objects outside our solar system, including identifiers, coordinates, measurements, and bibliographic references.

9

10

```python { .api }

11

from astroquery.simbad import Simbad

12

13

def query_object(object_name: str, *, wildcard: bool = False, criteria=None,

14

get_query_payload: bool = False, verbose: bool = False) -> Table:

15

"""

16

Query SIMBAD for information about a specific astronomical object.

17

18

Parameters:

19

- object_name: Name or identifier of the astronomical object

20

- wildcard: Enable wildcard matching for object names

21

- criteria: Dictionary specifying query criteria/fields

22

- get_query_payload: Return query parameters instead of executing

23

- verbose: Show detailed output

24

25

Returns:

26

Table with object information including coordinates, identifiers, and measurements

27

"""

28

29

def query_objects(object_names: List[str]) -> Table:

30

"""

31

Query SIMBAD for multiple objects simultaneously.

32

33

Parameters:

34

- object_names: List of object names or identifiers

35

36

Returns:

37

Table with information for all queried objects

38

"""

39

40

def query_region(coordinates: Union[SkyCoord, str], radius: Union[Quantity, str] = "2 arcmin", *,

41

criteria=None, get_query_payload: bool = False) -> Table:

42

"""

43

Query SIMBAD for objects within a sky region.

44

45

Parameters:

46

- coordinates: Center coordinates as SkyCoord or string

47

- radius: Search radius (default: 2 arcmin)

48

- criteria: Dictionary specifying query criteria/fields

49

- get_query_payload: Return query parameters instead of executing

50

51

Returns:

52

Table with objects found in the specified region

53

"""

54

55

def query_objectids(object_name: str) -> Table:

56

"""

57

Get all known identifiers for an astronomical object.

58

59

Parameters:

60

- object_name: Name or identifier of the object

61

62

Returns:

63

Table with all known identifiers and their sources

64

"""

65

66

def query_tap(query: str, **kwargs) -> Table:

67

"""

68

Execute direct TAP/ADQL queries against SIMBAD database.

69

70

Parameters:

71

- query: ADQL query string

72

- **kwargs: Additional TAP service parameters

73

74

Returns:

75

Table with query results

76

"""

77

78

# Configuration

79

from astroquery.simbad import conf

80

conf.server: List[str] # SIMBAD mirror servers

81

conf.timeout: int = 60 # Connection timeout in seconds

82

conf.row_limit: int = -1 # Maximum rows (-1 for unlimited)

83

```

84

85

Usage examples:

86

87

```python

88

from astroquery.simbad import Simbad

89

import astropy.units as u

90

from astropy.coordinates import SkyCoord

91

92

# Query basic object information

93

result = Simbad.query_object('M1')

94

print(result['main_id', 'ra', 'dec'])

95

96

# Query with wildcard matching

97

result = Simbad.query_object('NGC 1*', wildcard=True)

98

99

# Region query around coordinates

100

coords = SkyCoord('05h35m17.3s -05h23m28s', frame='icrs')

101

result = Simbad.query_region(coords, radius=2*u.arcmin)

102

103

# Get all identifiers for an object

104

ids = Simbad.query_objectids('M1')

105

print(ids['id'])

106

107

# Custom SIMBAD fields

108

Simbad.add_votable_fields('flux(B)', 'flux(V)', 'sptype')

109

result = Simbad.query_object('Vega')

110

```

111

112

### VizieR - Catalog Access Service

113

114

VizieR provides access to the most complete library of published astronomical catalogs and data tables available online, with standardized search capabilities across thousands of catalogs.

115

116

```python { .api }

117

from astroquery.vizier import Vizier

118

119

def query_object(object_name: str, radius: Union[Quantity, str] = None,

120

catalog: Union[str, List[str]] = None) -> TableList:

121

"""

122

Query VizieR catalogs around a named object.

123

124

Parameters:

125

- object_name: Name of the astronomical object

126

- radius: Search radius around object (default: 2 arcmin)

127

- catalog: Specific catalog(s) to query (default: all)

128

129

Returns:

130

TableList containing results from matching catalogs

131

"""

132

133

def query_region(coordinates: Union[SkyCoord, str], radius: Union[Quantity, str] = None,

134

catalog: Union[str, List[str]] = None) -> TableList:

135

"""

136

Query VizieR catalogs in a sky region.

137

138

Parameters:

139

- coordinates: Center coordinates as SkyCoord or string

140

- radius: Search radius (default: 2 arcmin)

141

- catalog: Specific catalog(s) to query

142

143

Returns:

144

TableList with catalog entries in the specified region

145

"""

146

147

def query_constraints(**kwargs) -> TableList:

148

"""

149

Query catalogs with column value constraints.

150

151

Parameters:

152

- **kwargs: Column constraints (e.g., Vmag='<10', BV='>0.5')

153

154

Returns:

155

TableList with entries matching the constraints

156

"""

157

158

def get_catalogs(keywords: Union[str, List[str]]) -> Table:

159

"""

160

Search for catalogs by keywords.

161

162

Parameters:

163

- keywords: Keywords to search catalog descriptions

164

165

Returns:

166

Table with matching catalog information

167

"""

168

169

def find_catalogs(keywords: Union[str, List[str]]) -> Table:

170

"""

171

Find available catalogs matching keywords.

172

173

Parameters:

174

- keywords: Search keywords

175

176

Returns:

177

Table with catalog names and descriptions

178

"""

179

180

# Configuration

181

from astroquery.vizier import conf

182

conf.server: str # VizieR server URL

183

conf.timeout: int = 60 # Connection timeout

184

conf.row_limit: int = 50 # Default row limit per catalog

185

```

186

187

Usage examples:

188

189

```python

190

from astroquery.vizier import Vizier

191

import astropy.units as u

192

from astropy.coordinates import SkyCoord

193

194

# Set row limit and columns

195

Vizier.ROW_LIMIT = 100

196

Vizier.columns = ['_RAJ2000', '_DEJ2000', 'Vmag']

197

198

# Query around an object

199

result = Vizier.query_object('M1', radius=5*u.arcmin)

200

print(f"Found {len(result)} catalogs")

201

202

# Query specific catalogs

203

result = Vizier.query_object('Polaris', catalog=['2MASS', 'USNO-B1'])

204

205

# Region query with constraints

206

coords = SkyCoord('12h30m', '+41d16m', frame='icrs')

207

result = Vizier.query_region(coords, radius=1*u.deg,

208

catalog='2MASS-PSC',

209

column_filters={'Kmag': '<10'})

210

211

# Find catalogs by keyword

212

catalogs = Vizier.find_catalogs('photometry')

213

print(catalogs['title'])

214

```

215

216

### Gaia - European Space Agency's Gaia Mission

217

218

Gaia provides access to the most precise stellar astrometry, photometry, and spectroscopy data available, revolutionizing our understanding of the Milky Way galaxy structure and stellar physics.

219

220

```python { .api }

221

from astroquery.gaia import Gaia

222

223

def query_object(coordinate: Union[SkyCoord, str], *, radius: Union[Quantity, str] = None,

224

width: Union[Quantity, str] = None, height: Union[Quantity, str] = None,

225

verbose: bool = False, columns: tuple = ()) -> Table:

226

"""

227

Query Gaia catalog around coordinates.

228

229

Parameters:

230

- coordinate: Center position as SkyCoord or string

231

- radius: Search radius for circular region

232

- width: Width for rectangular region

233

- height: Height for rectangular region

234

- verbose: Show detailed output

235

- columns: Tuple specifying which columns to retrieve

236

237

Returns:

238

Table with Gaia sources in the specified region

239

"""

240

241

def cone_search(coordinate: Union[SkyCoord, str], *, radius: Union[Quantity, str] = None,

242

table_name: str = None, ra_column_name: str = "ra", dec_column_name: str = "dec",

243

output_file: str = None, output_format: str = "votable_gzip",

244

verbose: bool = False, dump_to_file: bool = False, columns: tuple = ()) -> Table:

245

"""

246

Perform cone search in Gaia catalog.

247

248

Parameters:

249

- coordinate: Center coordinates

250

- radius: Search radius (maximum 0.5 degrees)

251

- table_name: Gaia table to query (uses default if not specified)

252

- ra_column_name: Name of RA column in the table

253

- dec_column_name: Name of DEC column in the table

254

- output_file: Optional file to save results

255

- output_format: Format for output file (votable_gzip, csv, etc.)

256

- verbose: Show detailed output

257

- dump_to_file: Save results to file

258

- columns: Tuple specifying which columns to retrieve

259

260

Returns:

261

Table with Gaia sources within the cone

262

"""

263

264

def cone_search_async(coordinate: Union[SkyCoord, str], radius: Union[Quantity, str] = None) -> JobResults:

265

"""

266

Submit asynchronous cone search job.

267

268

Parameters:

269

- coordinate: Center coordinates

270

- radius: Search radius

271

272

Returns:

273

JobResults object for retrieving results

274

"""

275

276

def launch_job(query: str, name: str = None, output_file: str = None,

277

output_format: str = 'votable', verbose: bool = False) -> JobResults:

278

"""

279

Submit synchronous ADQL query job to Gaia TAP service.

280

281

Parameters:

282

- query: ADQL query string

283

- name: Job name

284

- output_file: File to save results

285

- output_format: Output format ('votable', 'csv', 'fits')

286

- verbose: Show detailed output

287

288

Returns:

289

JobResults with query results

290

"""

291

292

def launch_job_async(query: str, name: str = None, output_file: str = None,

293

output_format: str = 'votable', verbose: bool = False) -> JobResults:

294

"""

295

Submit asynchronous ADQL query job.

296

297

Parameters:

298

- query: ADQL query string

299

- name: Job name

300

- output_file: File to save results

301

- output_format: Output format

302

- verbose: Show detailed output

303

304

Returns:

305

JobResults object for monitoring and retrieving results

306

"""

307

308

def load_table(table_name: str, verbose: bool = False) -> Table:

309

"""

310

Load Gaia data table schema information.

311

312

Parameters:

313

- table_name: Name of Gaia table to load

314

- verbose: Show detailed output

315

316

Returns:

317

Table with schema information

318

"""

319

320

# Configuration

321

from astroquery.gaia import conf

322

conf.server: str # Gaia TAP server URL

323

conf.timeout: int = 60 # Connection timeout

324

```

325

326

Usage examples:

327

328

```python

329

from astroquery.gaia import Gaia

330

import astropy.units as u

331

from astropy.coordinates import SkyCoord

332

333

# Simple cone search

334

coords = SkyCoord(ra=280.161, dec=11.161, unit='deg', frame='icrs')

335

result = Gaia.cone_search(coords, radius=0.1*u.deg)

336

print(f"Found {len(result)} Gaia sources")

337

338

# Query with ADQL

339

query = '''

340

SELECT TOP 1000 source_id, ra, dec, phot_g_mean_mag, bp_rp

341

FROM gaiadr3.gaia_source

342

WHERE CONTAINS(POINT('ICRS', ra, dec),

343

CIRCLE('ICRS', 280.161, 11.161, 0.1)) = 1

344

AND phot_g_mean_mag < 15

345

ORDER BY phot_g_mean_mag

346

'''

347

job = Gaia.launch_job(query)

348

result = job.get_results()

349

350

# Asynchronous job for large queries

351

job = Gaia.launch_job_async(query, name="bright_stars_search")

352

print(f"Job status: {job.get_phase()}")

353

result = job.get_results()

354

355

# Get table schema

356

schema = Gaia.load_table('gaiadr3.gaia_source')

357

print(schema['column_name', 'datatype', 'description'])

358

```

359

360

## Common Types

361

362

```python { .api }

363

from astropy.table import Table, TableList

364

from astropy.coordinates import SkyCoord

365

from astropy.units import Quantity

366

from typing import Union, List, Optional

367

368

# Input coordinate types

369

coordinates: Union[SkyCoord, str] # Sky coordinates

370

radius: Union[Quantity, str, None] # Search radius with units

371

372

# Query parameters

373

object_name: str # Astronomical object name

374

catalog: Union[str, List[str], None] # Catalog identifier(s)

375

get_query_payload: bool = False # Return parameters only

376

cache: bool = True # Enable caching

377

verbose: bool = False # Detailed output

378

379

# Return types

380

Table # Single table result

381

TableList # Multiple catalog results

382

JobResults # Asynchronous job results

383

```