or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

tessl/pypi-autogluon

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

Workspace
tessl
Visibility
Public
Created
Last updated
Describes
pypipkg:pypi/autogluon@1.4.x

To install, run

npx @tessl/cli install tessl/pypi-autogluon@1.4.0

0

# AutoGluon

1

2

AutoGluon is a comprehensive automated machine learning (AutoML) library that enables developers to build high-accuracy ML models with minimal code across multiple data modalities including tabular, text, image, and time series data. The library provides a unified interface through various predictor classes that automatically handle feature engineering, model selection, hyperparameter optimization, and ensemble creation.

3

4

## Package Information

5

6

- **Package Name**: autogluon

7

- **Language**: Python

8

- **Installation**: `pip install autogluon`

9

10

## Core Imports

11

12

```python

13

import autogluon

14

```

15

16

Common imports for specific domains:

17

18

```python

19

from autogluon.tabular import TabularPredictor, InterpretableTabularPredictor, TabularDataset

20

from autogluon.multimodal import MultiModalPredictor

21

from autogluon.timeseries import TimeSeriesPredictor, TimeSeriesDataFrame

22

```

23

24

Core utilities and data structures:

25

26

```python

27

from autogluon.core import constants, metrics

28

from autogluon.common import TabularDataset, FeatureMetadata

29

from autogluon.features import * # Feature generators

30

from autogluon.eda import AnalysisState

31

```

32

33

## Basic Usage

34

35

```python

36

# Tabular ML (most common use case)

37

predictor = TabularPredictor(label='target_column')

38

predictor.fit('train.csv', presets='best_quality')

39

40

# Make predictions

41

predictions = predictor.predict('test.csv')

42

probabilities = predictor.predict_proba('test.csv')

43

44

# Evaluate performance

45

performance = predictor.evaluate('test.csv')

46

leaderboard = predictor.leaderboard()

47

48

# Multimodal data (text + image + tabular)

49

mm_predictor = MultiModalPredictor(label='label', problem_type='multiclass')

50

mm_predictor.fit(train_data) # pandas DataFrame with text, image paths, and numerical columns

51

52

# Time series forecasting

53

ts_data = TimeSeriesDataFrame.from_data_frame(df, id_column='item_id', timestamp_column='timestamp')

54

ts_predictor = TimeSeriesPredictor(prediction_length=24, freq='H')

55

ts_predictor.fit(ts_data)

56

57

# Generate forecasts

58

forecasts = ts_predictor.predict(ts_data)

59

```

60

61

## Architecture

62

63

AutoGluon uses a modular architecture centered around specialized predictor classes:

64

65

- **TabularPredictor**: Handles structured/tabular data with automatic feature engineering, model selection from 10+ algorithms (RandomForest, XGBoost, LightGBM, CatBoost, Neural Networks), and intelligent ensembling

66

- **MultiModalPredictor**: Processes heterogeneous data combining text, images, and tabular features using foundation models (BERT, ResNet, Vision Transformers) with automatic modality-specific preprocessing

67

- **TimeSeriesPredictor**: Performs probabilistic forecasting with both statistical models (ARIMA, ETS) and deep learning models (DeepAR, Transformers), supporting multiple quantile levels

68

- **Core Infrastructure**: Shared utilities for metrics, hyperparameter optimization, model training, and evaluation across all predictor types

69

70

This design enables easy switching between domains while maintaining consistent APIs and leveraging state-of-the-art models for each data type.

71

72

## Capabilities

73

74

### Tabular Machine Learning

75

76

Automated machine learning for structured/tabular data supporting classification and regression tasks. Handles feature engineering, model selection, hyperparameter tuning, and ensembling with minimal configuration.

77

78

```python { .api }

79

class TabularPredictor:

80

def __init__(self, label: str, problem_type: str = None, path: str = None, **kwargs): ...

81

def fit(self, train_data, presets: str = None, time_limit: int = None, **kwargs): ...

82

def predict(self, data): ...

83

def predict_proba(self, data): ...

84

def evaluate(self, data, **kwargs): ...

85

def leaderboard(self, data=None, **kwargs): ...

86

```

87

88

[Tabular ML](./tabular.md)

89

90

### Multimodal Machine Learning

91

92

Automated machine learning for heterogeneous data combining text, images, and tabular features. Supports classification, regression, object detection, named entity recognition, and semantic matching tasks.

93

94

```python { .api }

95

class MultiModalPredictor:

96

def __init__(self, label: str = None, problem_type: str = None, presets: str = None, **kwargs): ...

97

def fit(self, train_data, **kwargs): ...

98

def predict(self, data, **kwargs): ...

99

def predict_proba(self, data, **kwargs): ...

100

def evaluate(self, data, **kwargs): ...

101

def extract_embedding(self, data, **kwargs): ...

102

```

103

104

[Multimodal ML](./multimodal.md)

105

106

### Time Series Forecasting

107

108

Probabilistic forecasting for univariate and multivariate time series data. Supports both statistical and deep learning models with automatic model selection and quantile predictions.

109

110

```python { .api }

111

class TimeSeriesPredictor:

112

def __init__(self, target: str = "target", prediction_length: int = 1, freq: str = None, **kwargs): ...

113

def fit(self, train_data, **kwargs): ...

114

def predict(self, data, **kwargs): ...

115

def evaluate(self, data, **kwargs): ...

116

def leaderboard(self, data=None, **kwargs): ...

117

```

118

119

[Time Series](./timeseries.md)

120

121

### Feature Engineering

122

123

Comprehensive feature generation and transformation capabilities for automated feature engineering across different data types.

124

125

```python { .api }

126

class AutoMLPipelineFeatureGenerator:

127

def __init__(self, **kwargs): ...

128

def fit_transform(self, X: DataFrame, y: Series = None, **kwargs): ...

129

def transform(self, X: DataFrame, **kwargs): ...

130

```

131

132

[Feature Engineering](./features.md)

133

134

### Core Utilities

135

136

Shared utilities for metrics, constants, and data structures used across all AutoGluon predictors.

137

138

```python { .api }

139

class TabularDataset:

140

def __init__(self, df: DataFrame): ...

141

@classmethod

142

def load(cls, file_path: str): ...

143

144

class Scorer:

145

def __init__(self, name: str, score_func: callable, **kwargs): ...

146

```

147

148

[Core Utilities](./core.md)

149

150

## Types

151

152

```python { .api }

153

# Problem type constants

154

BINARY = "binary"

155

MULTICLASS = "multiclass"

156

REGRESSION = "regression"

157

QUANTILE = "quantile"

158

159

# Common data structures

160

TabularDataset = pandas.DataFrame # Enhanced DataFrame with AutoGluon utilities

161

TimeSeriesDataFrame = pandas.DataFrame # Time series specific DataFrame structure

162

163

# Predictor types

164

TabularPredictor = Type[TabularPredictor]

165

MultiModalPredictor = Type[MultiModalPredictor]

166

TimeSeriesPredictor = Type[TimeSeriesPredictor]

167

```