tessl install tessl/pypi-azure-ai-documentintelligence@1.0.0Azure AI Document Intelligence client library for Python - a cloud service that uses machine learning to analyze text and structured data from documents
Agent Success
Agent success rate when using this tile
76%
Improvement
Agent success rate improvement when using this tile compared to baseline
1.19x
Baseline
Agent success rate without this tile
64%
{
"context": "Evaluates whether the solution uses azure-ai-documentintelligence long-running analysis features to control polling cadence, surface operation metadata, and resume work with continuation tokens. Focuses on proper poller usage for starting, resuming, and finalizing document analysis jobs.",
"type": "weighted_checklist",
"checklist": [
{
"name": "Custom polling",
"description": "Starts document analysis with an explicit `polling_interval` override (via `begin_analyze_document(..., polling_interval=...)` or client initialization) matching the requested cadence.",
"max_score": 25
},
{
"name": "Poller metadata",
"description": "Retrieves the operation identifier from `AnalyzeDocumentLROPoller.details` (e.g., `details['operation_id']`) and returns it as part of the job output.",
"max_score": 25
},
{
"name": "Continuation capture",
"description": "Captures a continuation token from the poller using the SDK method (e.g., `poller.continuation_token()`), not a fabricated placeholder, and exposes it for later resume.",
"max_score": 20
},
{
"name": "Resume from token",
"description": "Resumes a previous analysis using the SDK's continuation support (`AnalyzeDocumentLROPoller.from_continuation_token(...)` or `begin_analyze_document(..., continuation_token=token)`) without re-uploading the document.",
"max_score": 20
},
{
"name": "Result retrieval",
"description": "Obtains completed analysis content through the poller (`poller.result()` or async equivalent) after start/resume rather than bypassing the LRO machinery.",
"max_score": 10
}
]
}