or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

advanced-variational.mddata-io-utilities.mdgenerated-quantities.mdindex.mdinstallation-setup.mdmcmc-results.mdmodel-compilation.mdmodel-interface.mdoptimization-results.mdvariational-results.md

optimization-results.mddocs/

0

# Optimization Results

1

2

Container for maximum likelihood and maximum a posteriori estimation results. The CmdStanMLE class provides access to optimized parameter values and optimization iterations when available.

3

4

## Capabilities

5

6

### Parameter Access

7

8

Access optimized parameter estimates in multiple formats.

9

10

```python { .api }

11

def optimized_params_np(self):

12

"""

13

Get optimized parameters as NumPy array.

14

15

Returns:

16

np.ndarray: Final parameter estimates

17

"""

18

19

def optimized_params_pd(self):

20

"""

21

Get optimized parameters as pandas DataFrame.

22

23

Returns:

24

pd.DataFrame: Parameters with names as index

25

"""

26

27

def optimized_params_dict(self):

28

"""

29

Get optimized parameters as dictionary.

30

31

Returns:

32

dict: Mapping from parameter names to values

33

"""

34

35

def optimized_iterations_np(self):

36

"""

37

Get optimization iterations as NumPy array.

38

39

Returns:

40

np.ndarray or None: Iteration history if save_iterations=True

41

"""

42

43

def optimized_iterations_pd(self):

44

"""

45

Get optimization iterations as pandas DataFrame.

46

47

Returns:

48

pd.DataFrame or None: Iteration history if save_iterations=True

49

"""

50

```

51

52

### Variable Access

53

54

Access individual Stan variables with automatic type handling.

55

56

```python { .api }

57

def stan_variable(self, var, inc_iter=False):

58

"""

59

Get value for specific Stan variable.

60

61

Parameters:

62

- var (str): Variable name

63

- inc_iter (bool): Include optimization iterations if available

64

65

Returns:

66

float or np.ndarray: Variable value with original Stan dimensions

67

"""

68

69

def stan_variables(self, inc_iter=False):

70

"""

71

Get all Stan variables as dictionary.

72

73

Parameters:

74

- inc_iter (bool): Include optimization iterations if available

75

76

Returns:

77

dict: Mapping from variable names to values

78

"""

79

```

80

81

### File Operations

82

83

```python { .api }

84

def save_csvfiles(self, dir=None):

85

"""

86

Save CSV output files to directory.

87

88

Parameters:

89

- dir (str or PathLike, optional): Target directory

90

91

Returns:

92

None

93

"""

94

```

95

96

## Properties

97

98

```python { .api }

99

# Results information

100

mle.column_names # Tuple[str, ...]: Parameter names

101

mle.metadata # InferenceMetadata: Run configuration and timing

102

```

103

104

## Usage Examples

105

106

```python

107

# Run optimization

108

mle = model.optimize(data=data, algorithm="lbfgs", iter=1000)

109

110

# Access results in different formats

111

params_dict = mle.optimized_params_dict()

112

print(f"MLE estimate for theta: {params_dict['theta']}")

113

114

# Get specific variables

115

theta_mle = mle.stan_variable("theta")

116

sigma_mle = mle.stan_variable("sigma")

117

118

# Save results

119

mle.save_csvfiles(dir="./mle_results")

120

```