Ctrl + k

or run

tessl search
Log in

Version

Workspace
tessl
Visibility
Public
Created
Last updated
Describes
pypipkg:pypi/connectorx@0.4.x
tile.json

tessl/pypi-connectorx

tessl install tessl/pypi-connectorx@0.4.0

Load data from databases to dataframes, the fastest way.

Agent Success

Agent success rate when using this tile

86%

Improvement

Agent success rate improvement when using this tile compared to baseline

1.05x

Baseline

Agent success rate without this tile

82%

rubric.jsonevals/scenario-4/

{
  "context": "This criteria evaluates how well the engineer uses ConnectorX's type system and data type conversion capabilities. The focus is on proper usage of read_sql() with different return_type parameters, understanding type mappings between database and Python/Arrow types, and correctly handling nullable types.",
  "type": "weighted_checklist",
  "checklist": [
    {
      "name": "Use read_sql function",
      "description": "Uses connectorx.read_sql() or cx.read_sql() to load data from the database",
      "max_score": 20
    },
    {
      "name": "Pandas format loading",
      "description": "Uses return_type='pandas' parameter or default behavior to load data into pandas DataFrame format",
      "max_score": 15
    },
    {
      "name": "Arrow format loading",
      "description": "Uses return_type='arrow' or return_type='arrow2' parameter to load data into arrow format",
      "max_score": 15
    },
    {
      "name": "Pandas type extraction",
      "description": "Correctly extracts pandas DataFrame column types using df.dtypes and converts them to strings",
      "max_score": 12
    },
    {
      "name": "Arrow type extraction",
      "description": "Correctly extracts arrow table/RecordBatch column types using schema inspection (e.g., table.schema)",
      "max_score": 13
    },
    {
      "name": "Nullable type handling",
      "description": "Demonstrates understanding that ConnectorX returns nullable types (Int64, boolean) for pandas format instead of converting NULL integers to float64",
      "max_score": 15
    },
    {
      "name": "Format type differences",
      "description": "Demonstrates that type representations differ between pandas and arrow formats (e.g., pandas 'Int64' vs arrow 'int64')",
      "max_score": 10
    }
  ]
}