tessl install tessl/pypi-connectorx@0.4.0Load data from databases to dataframes, the fastest way.
Agent Success
Agent success rate when using this tile
86%
Improvement
Agent success rate improvement when using this tile compared to baseline
1.05x
Baseline
Agent success rate without this tile
82%
{
"context": "This criteria evaluates how well the engineer uses ConnectorX's type system and data type conversion capabilities. The focus is on proper usage of read_sql() with different return_type parameters, understanding type mappings between database and Python/Arrow types, and correctly handling nullable types.",
"type": "weighted_checklist",
"checklist": [
{
"name": "Use read_sql function",
"description": "Uses connectorx.read_sql() or cx.read_sql() to load data from the database",
"max_score": 20
},
{
"name": "Pandas format loading",
"description": "Uses return_type='pandas' parameter or default behavior to load data into pandas DataFrame format",
"max_score": 15
},
{
"name": "Arrow format loading",
"description": "Uses return_type='arrow' or return_type='arrow2' parameter to load data into arrow format",
"max_score": 15
},
{
"name": "Pandas type extraction",
"description": "Correctly extracts pandas DataFrame column types using df.dtypes and converts them to strings",
"max_score": 12
},
{
"name": "Arrow type extraction",
"description": "Correctly extracts arrow table/RecordBatch column types using schema inspection (e.g., table.schema)",
"max_score": 13
},
{
"name": "Nullable type handling",
"description": "Demonstrates understanding that ConnectorX returns nullable types (Int64, boolean) for pandas format instead of converting NULL integers to float64",
"max_score": 15
},
{
"name": "Format type differences",
"description": "Demonstrates that type representations differ between pandas and arrow formats (e.g., pandas 'Int64' vs arrow 'int64')",
"max_score": 10
}
]
}