Ctrl + k

or run

tessl search
Log in

Version

Workspace
tessl
Visibility
Public
Created
Last updated
Describes
pypipkg:pypi/crosshair-tool@0.0.x
tile.json

tessl/pypi-crosshair-tool

tessl install tessl/pypi-crosshair-tool@0.0.0

Analyze Python code for correctness using symbolic execution and SMT solving to automatically find counterexamples for functions with type annotations and contracts.

Agent Success

Agent success rate when using this tile

86%

Improvement

Agent success rate improvement when using this tile compared to baseline

1.25x

Baseline

Agent success rate without this tile

69%

rubric.jsonevals/scenario-7/

{
  "context": "This criteria evaluates how well the engineer uses CrossHair's symbolic type system to generate symbolic values for different Python types. The focus is on correct usage of proxy_for_type, realize/deep_realize, and understanding of symbolic value creation.",
  "type": "weighted_checklist",
  "checklist": [
    {
      "name": "Uses proxy_for_type",
      "description": "The implementation imports and uses proxy_for_type() from crosshair.libimpl.builtinslib or crosshair.core_and_libs to create symbolic values",
      "max_score": 30
    },
    {
      "name": "Correct type handling",
      "description": "The create_symbolic() method correctly passes the type_hint and name parameters to proxy_for_type(), handling both primitive types (int, str, bool) and collection types (list, dict)",
      "max_score": 25
    },
    {
      "name": "Uses realize function",
      "description": "The realize() method imports and uses realize() or deep_realize() from crosshair.libimpl.builtinslib or crosshair.core_and_libs to convert symbolic values to concrete values",
      "max_score": 20
    },
    {
      "name": "Proper error handling",
      "description": "The implementation handles TypeError or other exceptions appropriately when unsupported types are passed to create_symbolic(), as specified in the API documentation",
      "max_score": 15
    },
    {
      "name": "Symbolic value integration",
      "description": "The implementation correctly returns symbolic values that maintain symbolic properties and can be used in constraint solving contexts, not just regular Python values",
      "max_score": 10
    }
  ]
}