or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

core-utilities.mddata-access.mdimage-processing.mdindex.mdneural-networks.mdregistration.mdsegmentation.mdsignal-reconstruction.mdsimulations.mdstatistics.mdtractography.mdvisualization.mdworkflows.md

neural-networks.mddocs/

0

# Neural Networks and Deep Learning

1

2

Deep learning models for image denoising, enhancement, and reconstruction of diffusion MRI data. DIPY provides neural network implementations for improving data quality and accelerating processing workflows.

3

4

## Capabilities

5

6

### Denoising Networks

7

8

Deep learning approaches for removing noise from diffusion MRI data while preserving anatomical structures.

9

10

```python { .api }

11

def patch2self(data, bvals, patch_radius=0, model='ols', b0_threshold=50, out_dtype=None, alpha=1.0, verbose=False):

12

"""

13

Self-supervised denoising using patch-based learning.

14

15

Parameters:

16

data (array): 4D diffusion data (x, y, z, volumes)

17

bvals (array): b-values for each volume

18

patch_radius (int): radius for patch extraction

19

model (str): regression model ('ols', 'ridge', 'lasso')

20

b0_threshold (float): threshold for b=0 identification

21

out_dtype (dtype): output data type

22

alpha (float): regularization parameter

23

verbose (bool): print progress information

24

25

Returns:

26

array: denoised diffusion data

27

"""

28

29

class Patch2SelfDenoiser:

30

"""Self-supervised patch-based denoiser."""

31

def __init__(self, patch_radius=0, model='ols', alpha=1.0):

32

"""

33

Initialize Patch2Self denoiser.

34

35

Parameters:

36

patch_radius (int): patch extraction radius

37

model (str): regression model type

38

alpha (float): regularization strength

39

"""

40

41

def denoise(self, data, bvals, b0_threshold=50):

42

"""

43

Apply denoising to diffusion data.

44

45

Parameters:

46

data (array): input diffusion data

47

bvals (array): b-values

48

b0_threshold (float): b=0 threshold

49

50

Returns:

51

array: denoised data

52

"""

53

54

def deepn4(vol, affine=None, mask=None, dtype=None):

55

"""

56

Deep learning-based N4 bias field correction.

57

58

Parameters:

59

vol (array): input volume data

60

affine (array): voxel-to-world transformation

61

mask (array): brain mask

62

dtype (dtype): output data type

63

64

Returns:

65

array: bias-corrected volume

66

"""

67

```

68

69

### Enhancement Networks

70

71

Networks for improving image quality, resolution, and contrast in diffusion MRI.

72

73

```python { .api }

74

class EVAC:

75

"""Enhanced Volume And Contrast using deep learning."""

76

def __init__(self, model_path=None):

77

"""

78

Initialize EVAC enhancement model.

79

80

Parameters:

81

model_path (str): path to pre-trained model weights

82

"""

83

84

def predict(self, low_res_data, **kwargs):

85

"""

86

Enhance low-resolution diffusion data.

87

88

Parameters:

89

low_res_data (array): input low-resolution data

90

91

Returns:

92

array: enhanced high-resolution data

93

"""

94

95

class HistoResDNN:

96

"""Histogram Restoration Deep Neural Network."""

97

def __init__(self, model_path=None):

98

"""Initialize histogram restoration model."""

99

100

def predict(self, input_data, **kwargs):

101

"""

102

Restore signal histograms using deep learning.

103

104

Parameters:

105

input_data (array): input diffusion data

106

107

Returns:

108

array: histogram-restored data

109

"""

110

111

def synb0_normalize(dwi_data, bvals, b0_threshold=50):

112

"""

113

Normalize DWI data for SynB0 processing.

114

115

Parameters:

116

dwi_data (array): diffusion weighted images

117

bvals (array): b-values

118

b0_threshold (float): b=0 threshold

119

120

Returns:

121

array: normalized DWI data

122

"""

123

```

124

125

### Synthesis Networks

126

127

Networks for synthesizing missing contrasts or b=0 images from existing data.

128

129

```python { .api }

130

class SynB0:

131

"""Synthetic b=0 image generation."""

132

def __init__(self, model_path=None):

133

"""

134

Initialize SynB0 synthesis model.

135

136

Parameters:

137

model_path (str): path to trained model

138

"""

139

140

def predict(self, dwi_data, **kwargs):

141

"""

142

Generate synthetic b=0 image from DWI data.

143

144

Parameters:

145

dwi_data (array): diffusion weighted images

146

147

Returns:

148

array: synthetic b=0 image

149

"""

150

151

def synth_b0(dwi_vol, bvals, bvecs, model=None):

152

"""

153

Synthesize b=0 volume from DWI data.

154

155

Parameters:

156

dwi_vol (array): DWI volume data

157

bvals (array): b-values

158

bvecs (array): gradient directions

159

model: trained synthesis model

160

161

Returns:

162

array: synthesized b=0 volume

163

"""

164

165

class ContrastSynthesis:

166

"""Multi-contrast synthesis for diffusion MRI."""

167

def __init__(self, source_contrast, target_contrast):

168

"""

169

Initialize contrast synthesis.

170

171

Parameters:

172

source_contrast (str): input contrast type

173

target_contrast (str): desired output contrast

174

"""

175

176

def train(self, paired_data):

177

"""Train synthesis model on paired data."""

178

179

def synthesize(self, source_data):

180

"""Synthesize target contrast from source."""

181

```

182

183

### Neural Network Utilities

184

185

Supporting utilities for neural network training, evaluation, and deployment.

186

187

```python { .api }

188

class DummyNeuralNetwork:

189

"""Dummy neural network for testing and development."""

190

def __init__(self, input_shape=None, output_shape=None):

191

"""

192

Initialize dummy network.

193

194

Parameters:

195

input_shape (tuple): expected input dimensions

196

output_shape (tuple): output dimensions

197

"""

198

199

def predict(self, data, **kwargs):

200

"""

201

Dummy prediction function.

202

203

Parameters:

204

data (array): input data

205

206

Returns:

207

array: processed output data

208

"""

209

210

def load_model_weights(model_path, framework='tensorflow'):

211

"""

212

Load pre-trained model weights.

213

214

Parameters:

215

model_path (str): path to model file

216

framework (str): deep learning framework ('tensorflow', 'pytorch')

217

218

Returns:

219

object: loaded model with weights

220

"""

221

222

def preprocess_for_network(data, normalization='z_score'):

223

"""

224

Preprocess data for neural network input.

225

226

Parameters:

227

data (array): input diffusion data

228

normalization (str): normalization method

229

230

Returns:

231

array: preprocessed data ready for network

232

"""

233

234

def postprocess_network_output(output, original_data):

235

"""

236

Postprocess network output to match original data characteristics.

237

238

Parameters:

239

output (array): network output

240

original_data (array): original input data for reference

241

242

Returns:

243

array: postprocessed output

244

"""

245

```

246

247

### Training and Validation

248

249

Tools for training custom neural networks on diffusion MRI data.

250

251

```python { .api }

252

class DiffusionNetworkTrainer:

253

"""Trainer for diffusion MRI neural networks."""

254

def __init__(self, model, loss_function='mse', optimizer='adam'):

255

"""

256

Initialize network trainer.

257

258

Parameters:

259

model: neural network model

260

loss_function (str): training loss function

261

optimizer (str): optimization algorithm

262

"""

263

264

def train(self, train_data, val_data, epochs=100, batch_size=32):

265

"""

266

Train the neural network.

267

268

Parameters:

269

train_data (tuple): (X_train, y_train) training data

270

val_data (tuple): (X_val, y_val) validation data

271

epochs (int): number of training epochs

272

batch_size (int): batch size for training

273

274

Returns:

275

dict: training history and metrics

276

"""

277

278

def evaluate(self, test_data):

279

"""Evaluate model on test data."""

280

281

class DataAugmentation:

282

"""Data augmentation for diffusion MRI training."""

283

def __init__(self, rotation_range=10, noise_level=0.1):

284

"""Initialize augmentation parameters."""

285

286

def augment_batch(self, batch_data):

287

"""Apply augmentation to training batch."""

288

289

def cross_validation(model, data, k_folds=5):

290

"""

291

Perform k-fold cross-validation.

292

293

Parameters:

294

model: neural network model

295

data (tuple): (X, y) dataset

296

k_folds (int): number of folds

297

298

Returns:

299

dict: cross-validation results

300

"""

301

```

302

303

### Model Zoo

304

305

Pre-trained models for common diffusion MRI tasks.

306

307

```python { .api }

308

def get_pretrained_model(task='denoising', architecture='patch2self'):

309

"""

310

Load pre-trained model for specific task.

311

312

Parameters:

313

task (str): target task ('denoising', 'enhancement', 'synthesis')

314

architecture (str): model architecture name

315

316

Returns:

317

object: loaded pre-trained model

318

"""

319

320

class ModelRegistry:

321

"""Registry of available pre-trained models."""

322

@staticmethod

323

def list_models():

324

"""List all available pre-trained models."""

325

326

@staticmethod

327

def download_model(model_name, cache_dir=None):

328

"""Download and cache model weights."""

329

330

@staticmethod

331

def load_model(model_name):

332

"""Load model from registry."""

333

334

def benchmark_model(model, test_data, metrics=['psnr', 'ssim', 'mse']):

335

"""

336

Benchmark model performance on test data.

337

338

Parameters:

339

model: trained model

340

test_data (tuple): (X_test, y_test) test dataset

341

metrics (list): evaluation metrics to compute

342

343

Returns:

344

dict: performance metrics

345

"""

346

```

347

348

### Usage Examples

349

350

```python

351

# Patch2Self denoising example

352

from dipy.nn.patch2self import patch2self

353

from dipy.data import read_stanford_hardi

354

import numpy as np

355

356

# Load noisy diffusion data

357

img, gtab = read_stanford_hardi()

358

data = img.get_fdata()

359

360

# Add artificial noise for demonstration

361

noisy_data = data + np.random.normal(0, 0.1 * data.mean(), data.shape)

362

363

# Apply Patch2Self denoising

364

denoised_data = patch2self(

365

noisy_data,

366

gtab.bvals,

367

patch_radius=1,

368

model='ridge',

369

alpha=1.0,

370

verbose=True

371

)

372

373

print(f"Original data shape: {data.shape}")

374

print(f"Denoised data shape: {denoised_data.shape}")

375

376

# Calculate denoising performance

377

mse_before = np.mean((noisy_data - data) ** 2)

378

mse_after = np.mean((denoised_data - data) ** 2)

379

print(f"MSE before denoising: {mse_before:.6f}")

380

print(f"MSE after denoising: {mse_after:.6f}")

381

print(f"Improvement: {(mse_before - mse_after) / mse_before * 100:.1f}%")

382

383

# Deep N4 bias correction

384

from dipy.nn.deepn4 import deepn4

385

386

# Apply bias field correction (simulated)

387

bias_corrected = deepn4(data[..., 0], affine=img.affine) # Correct b=0 image

388

print(f"Bias correction applied to shape: {bias_corrected.shape}")

389

390

# SynB0 synthetic b=0 generation

391

from dipy.nn.synb0 import SynB0

392

393

# Initialize SynB0 model

394

synb0_model = SynB0()

395

396

# Generate synthetic b=0 from DWI data

397

dwi_only = data[..., gtab.bvals > 50] # Extract DWI volumes

398

synthetic_b0 = synb0_model.predict(dwi_only)

399

400

print(f"Synthetic b=0 shape: {synthetic_b0.shape}")

401

402

# Compare with actual b=0

403

actual_b0 = data[..., gtab.bvals <= 50].mean(axis=-1)

404

correlation = np.corrcoef(actual_b0.flatten(), synthetic_b0.flatten())[0, 1]

405

print(f"Correlation with actual b=0: {correlation:.3f}")

406

407

# Custom network training example

408

from dipy.nn.utils import DiffusionNetworkTrainer, DataAugmentation

409

410

# Prepare training data (simulated)

411

n_samples = 1000

412

patch_size = 16

413

n_directions = len(gtab.bvals)

414

415

# Create patches for training

416

X_train = np.random.random((n_samples, patch_size, patch_size, n_directions))

417

y_train = np.random.random((n_samples, patch_size, patch_size, 1)) # Target (e.g., FA)

418

419

X_val = np.random.random((200, patch_size, patch_size, n_directions))

420

y_val = np.random.random((200, patch_size, patch_size, 1))

421

422

# Initialize trainer

423

trainer = DiffusionNetworkTrainer(

424

model=None, # Would be actual model

425

loss_function='mse',

426

optimizer='adam'

427

)

428

429

# Data augmentation

430

augmenter = DataAugmentation(rotation_range=15, noise_level=0.05)

431

432

print("Training setup complete")

433

print(f"Training data shape: {X_train.shape}")

434

print(f"Validation data shape: {X_val.shape}")

435

436

# Model evaluation and benchmarking

437

from dipy.nn.utils import benchmark_model

438

439

# Benchmark denoising performance

440

test_metrics = {

441

'mse': mse_after,

442

'psnr': 20 * np.log10(data.max() / np.sqrt(mse_after)),

443

'snr_improvement': 10 * np.log10(mse_before / mse_after)

444

}

445

446

print("Denoising Performance Metrics:")

447

for metric, value in test_metrics.items():

448

print(f" {metric.upper()}: {value:.3f}")

449

450

# Load pre-trained model from registry

451

from dipy.nn.model_zoo import get_pretrained_model, ModelRegistry

452

453

# List available models

454

available_models = ModelRegistry.list_models()

455

print(f"Available pre-trained models: {len(available_models)}")

456

457

# Load specific model

458

denoising_model = get_pretrained_model(task='denoising', architecture='patch2self')

459

print(f"Loaded pre-trained denoising model: {type(denoising_model)}")

460

```