or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

advanced-remapping.mdcore-operations.mddtype-management.mdindex.mdmasking.mdmemory-layout.mdsearch-analysis.mdserialization.md

masking.mddocs/

0

# Masking and Filtering

1

2

Operations for selectively hiding or preserving specific values in arrays. Essential for image segmentation, data cleaning workflows, and selective data processing where certain labels need to be excluded or isolated.

3

4

## Capabilities

5

6

### Label Masking

7

8

Zero out designated labels in an array with a specified mask value.

9

10

```python { .api }

11

def mask(

12

arr: ArrayLike,

13

labels: ArrayLike,

14

in_place: bool = False,

15

value: Union[int, float] = 0

16

) -> NDArray:

17

"""

18

Mask out designated labels in an array with the given value.

19

20

Args:

21

arr: Input N-dimensional numpy array

22

labels: Iterable list of integers to mask

23

in_place: Modify input array to reduce memory consumption

24

value: Mask value (default: 0)

25

26

Returns:

27

Array with specified labels masked out

28

"""

29

```

30

31

**Usage Example:**

32

33

```python

34

import fastremap

35

import numpy as np

36

37

# Sample labeled image

38

labels = np.array([0, 1, 2, 3, 4, 5, 1, 2, 3])

39

40

# Mask specific labels

41

masked = fastremap.mask(labels, [1, 3, 5])

42

# Result: [0, 0, 2, 0, 4, 0, 0, 2, 0]

43

44

# Mask with custom value

45

masked = fastremap.mask(labels, [2, 4], value=-1)

46

# Result: [0, 1, -1, 3, -1, 5, 1, -1, 3]

47

48

# In-place masking to save memory

49

fastremap.mask(labels, [1, 3], in_place=True)

50

```

51

52

### Inverse Masking

53

54

Zero out all labels except those in the provided list, effectively preserving only the specified labels.

55

56

```python { .api }

57

def mask_except(

58

arr: NDArray,

59

labels: ArrayLike,

60

in_place: bool = False,

61

value: Union[int, float] = 0

62

) -> NDArray:

63

"""

64

Mask out all labels except the provided list.

65

66

Args:

67

arr: Input N-dimensional numpy array

68

labels: Iterable list of integers to preserve

69

in_place: Modify input array to reduce memory consumption

70

value: Mask value (default: 0)

71

72

Returns:

73

Array with all labels except specified ones masked out

74

"""

75

```

76

77

**Usage Example:**

78

79

```python

80

import fastremap

81

import numpy as np

82

83

# Sample labeled image

84

labels = np.array([0, 1, 2, 3, 4, 5, 1, 2, 3])

85

86

# Keep only specific labels

87

preserved = fastremap.mask_except(labels, [1, 3])

88

# Result: [0, 1, 0, 3, 0, 0, 1, 0, 3]

89

90

# Keep labels with custom mask value

91

preserved = fastremap.mask_except(labels, [2, 4], value=-1)

92

# Result: [-1, -1, 2, -1, 4, -1, -1, 2, -1]

93

94

# In-place operation

95

fastremap.mask_except(labels, [1, 2], in_place=True)

96

```

97

98

## Types

99

100

```python { .api }

101

ArrayLike = Union[np.ndarray, list, tuple]

102

NDArray = np.ndarray

103

```