or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

ai-ml.mddata-conversion.mddata-export.mdearth-engine.mdindex.mdinteractive-mapping.mdvisualization.mdwidgets-tools.md

earth-engine.mddocs/

0

# Earth Engine Integration

1

2

Specialized tools and utilities for working with Google Earth Engine, including tile layer creation, authentication, initialization, and comprehensive API integration features.

3

4

## Capabilities

5

6

### Earth Engine Initialization

7

8

Initialize and authenticate with Google Earth Engine service with various authentication methods and configuration options.

9

10

```python { .api }

11

def ee_initialize(

12

token_name: str = "EARTHENGINE_TOKEN",

13

auth_args: Dict = None,

14

**kwargs

15

) -> None:

16

"""

17

Initialize Earth Engine with authentication.

18

19

Args:

20

token_name: Environment variable name for token

21

auth_args: Authentication arguments

22

**kwargs: Additional initialization parameters

23

"""

24

25

def set_proxy(

26

port: int = 1080,

27

host: str = "127.0.0.1",

28

**kwargs

29

) -> None:

30

"""

31

Set proxy configuration for Earth Engine.

32

33

Args:

34

port: Proxy port number

35

host: Proxy host address

36

**kwargs: Additional proxy parameters

37

"""

38

```

39

40

### Tile Layer Creation

41

42

Create tile layers from Earth Engine objects for visualization in interactive maps.

43

44

```python { .api }

45

def ee_tile_layer(

46

ee_object,

47

vis_params: Dict = {},

48

name: str = "Layer",

49

shown: bool = True,

50

opacity: float = 1.0

51

) -> ipyleaflet.TileLayer:

52

"""

53

Create Earth Engine tile layer for ipyleaflet maps.

54

55

Args:

56

ee_object: Earth Engine object (Image, ImageCollection, FeatureCollection)

57

vis_params: Visualization parameters

58

name: Layer name

59

shown: Whether layer is visible

60

opacity: Layer opacity (0-1)

61

62

Returns:

63

ipyleaflet TileLayer object

64

"""

65

```

66

67

**Visualization Parameters:**

68

- `min`, `max`: Value range for stretching

69

- `bands`: Band selection for RGB visualization

70

- `palette`: Color palette for single-band images

71

- `gamma`: Gamma correction value

72

73

### Earth Engine Tile Layer Classes

74

75

Specialized tile layer classes for different mapping backends.

76

77

```python { .api }

78

class EELeafletTileLayer:

79

"""Earth Engine tile layer for ipyleaflet backend."""

80

81

def __init__(

82

self,

83

ee_object,

84

vis_params: Dict = {},

85

name: str = "Layer",

86

opacity: float = 1.0,

87

visible: bool = True,

88

**kwargs

89

) -> None:

90

"""

91

Initialize Earth Engine tile layer for ipyleaflet.

92

93

Args:

94

ee_object: Earth Engine object

95

vis_params: Visualization parameters

96

name: Layer name

97

opacity: Layer opacity

98

visible: Layer visibility

99

**kwargs: Additional parameters

100

"""

101

102

class EEFoliumTileLayer:

103

"""Earth Engine tile layer for folium backend."""

104

105

def __init__(

106

self,

107

ee_object,

108

vis_params: Dict = {},

109

name: str = "Layer",

110

opacity: float = 1.0,

111

visible: bool = True,

112

**kwargs

113

) -> None:

114

"""

115

Initialize Earth Engine tile layer for folium.

116

117

Args:

118

ee_object: Earth Engine object

119

vis_params: Visualization parameters

120

name: Layer name

121

opacity: Layer opacity

122

visible: Layer visibility

123

**kwargs: Additional parameters

124

"""

125

```

126

127

### Authentication and Credentials

128

129

Manage Earth Engine authentication and credential handling across different environments.

130

131

```python { .api }

132

def is_drive_mounted() -> bool:

133

"""

134

Check if Google Drive is mounted in Colab.

135

136

Returns:

137

True if Drive is mounted

138

"""

139

140

def credentials_in_drive() -> bool:

141

"""

142

Check for Earth Engine credentials in Google Drive.

143

144

Returns:

145

True if credentials found in Drive

146

"""

147

148

def credentials_in_colab() -> bool:

149

"""

150

Check for Earth Engine credentials in Colab.

151

152

Returns:

153

True if credentials found in Colab

154

"""

155

156

def copy_credentials_to_drive() -> None:

157

"""Copy Earth Engine credentials to Google Drive."""

158

159

def copy_credentials_to_colab() -> None:

160

"""Copy Earth Engine credentials from Drive to Colab."""

161

```

162

163

### Object Information and Utilities

164

165

Utilities for inspecting and working with Earth Engine objects.

166

167

```python { .api }

168

def get_info(ee_object, **kwargs) -> Dict:

169

"""

170

Get information about Earth Engine object.

171

172

Args:

173

ee_object: Earth Engine object

174

**kwargs: Additional parameters

175

176

Returns:

177

Information dictionary

178

"""

179

180

def geometry_type(ee_object) -> str:

181

"""

182

Get geometry type of Earth Engine object.

183

184

Args:

185

ee_object: Earth Engine geometry object

186

187

Returns:

188

Geometry type string

189

"""

190

191

def build_computed_object_tree(ee_object) -> Dict:

192

"""

193

Build computed object tree for visualization.

194

195

Args:

196

ee_object: Earth Engine object

197

198

Returns:

199

Tree structure dictionary

200

"""

201

```

202

203

### Environment Detection

204

205

Detect execution environment for proper Earth Engine integration.

206

207

```python { .api }

208

def in_colab_shell() -> bool:

209

"""

210

Test if code is being executed within Google Colab.

211

212

Returns:

213

True if running in Google Colab

214

"""

215

216

def get_env_var(name: str, default: str = None) -> str:

217

"""

218

Get environment variable value.

219

220

Args:

221

name: Environment variable name

222

default: Default value if not found

223

224

Returns:

225

Environment variable value

226

"""

227

```

228

229

### Time Series Inspector

230

231

Interactive time series analysis tools for Earth Engine image collections.

232

233

```python { .api }

234

def ts_inspector(

235

map_object=None,

236

left_ts: ee.ImageCollection = None,

237

right_ts: ee.ImageCollection = None,

238

left_names: List[str] = None,

239

right_names: List[str] = None,

240

**kwargs

241

) -> widgets.VBox:

242

"""

243

Create time series inspector widget.

244

245

Args:

246

map_object: Map object to attach inspector

247

left_ts: Left panel time series collection

248

right_ts: Right panel time series collection

249

left_names: Names for left panel bands

250

right_names: Names for right panel bands

251

**kwargs: Additional parameters

252

253

Returns:

254

Time series inspector widget

255

"""

256

```

257

258

### Data Catalog Integration

259

260

Tools for working with Earth Engine data catalog and asset discovery.

261

262

```python { .api }

263

class Catalog:

264

"""Earth Engine data catalog interface."""

265

266

def __init__(self) -> None:

267

"""Initialize catalog interface."""

268

269

def search(self, keywords: str = None, **kwargs) -> List[Dict]:

270

"""

271

Search Earth Engine data catalog.

272

273

Args:

274

keywords: Search keywords

275

**kwargs: Additional search parameters

276

277

Returns:

278

List of matching dataset information

279

"""

280

281

def get_metadata(asset_id: str) -> Dict:

282

"""

283

Get metadata for Earth Engine asset.

284

285

Args:

286

asset_id: Earth Engine asset ID

287

288

Returns:

289

Asset metadata dictionary

290

"""

291

```

292

293

## Usage Examples

294

295

### Basic Earth Engine Setup

296

297

```python

298

import geemap

299

import ee

300

301

# Initialize Earth Engine

302

geemap.ee_initialize()

303

304

# Alternative initialization with token

305

geemap.ee_initialize(token_name='MY_EE_TOKEN')

306

```

307

308

### Creating Tile Layers

309

310

```python

311

# Create image tile layer

312

image = ee.Image('USGS/SRTMGL1_003')

313

vis_params = {

314

'min': 0,

315

'max': 4000,

316

'palette': ['blue', 'green', 'red']

317

}

318

319

tile_layer = geemap.ee_tile_layer(image, vis_params, 'Elevation')

320

321

# Add to map

322

m = geemap.Map()

323

m.add_layer(tile_layer)

324

```

325

326

### Authentication in Different Environments

327

328

```python

329

# Check environment and handle credentials

330

if geemap.in_colab_shell():

331

if not geemap.credentials_in_colab():

332

if geemap.credentials_in_drive():

333

geemap.copy_credentials_to_colab()

334

else:

335

ee.Authenticate()

336

geemap.ee_initialize()

337

else:

338

geemap.ee_initialize()

339

else:

340

# Local Jupyter environment

341

geemap.ee_initialize()

342

```

343

344

### Time Series Analysis

345

346

```python

347

# Create time series inspector

348

collection = (ee.ImageCollection('MODIS/006/MOD13A2')

349

.filterDate('2020-01-01', '2020-12-31')

350

.select('NDVI'))

351

352

inspector = geemap.ts_inspector(

353

left_ts=collection,

354

left_names=['NDVI']

355

)

356

357

# Display inspector widget

358

inspector

359

```

360

361

### Object Information

362

363

```python

364

# Get Earth Engine object information

365

image = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20140318')

366

info = geemap.get_info(image)

367

print(f"Bands: {info['bands']}")

368

print(f"Properties: {info['properties']}")

369

370

# Check geometry type

371

geometry = ee.Geometry.Point([-122, 37])

372

geom_type = geemap.geometry_type(geometry)

373

print(f"Geometry type: {geom_type}")

374

```

375

376

## Types

377

378

```python { .api }

379

# Visualization parameters type

380

VisParams = Dict[str, Union[int, float, List[str], List[int], List[float]]]

381

382

# Earth Engine object info type

383

ObjectInfo = Dict[str, Any]

384

385

# Authentication arguments type

386

AuthArgs = Dict[str, Union[str, bool, Dict]]

387

388

# Asset metadata type

389

AssetMetadata = Dict[str, Union[str, int, float, List, Dict]]

390

```