or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

tessl/pypi-google-cloud-aiplatform

Comprehensive Python client library for Google Cloud Vertex AI, offering machine learning tools, generative AI models, and MLOps capabilities

Workspace
tessl
Visibility
Public
Created
Last updated
Describes
pypipkg:pypi/google-cloud-aiplatform@1.111.x

To install, run

npx @tessl/cli install tessl/pypi-google-cloud-aiplatform@1.111.0

0

# Google Cloud AI Platform

1

2

A comprehensive Python client library for Google Cloud Vertex AI, offering access to Google's integrated suite of machine learning tools and services. The library enables developers to build, deploy, and manage ML models using both AutoML and custom code approaches, supporting the entire machine learning development lifecycle from data preparation to model deployment and monitoring.

3

4

## Package Information

5

6

- **Package Name**: google-cloud-aiplatform

7

- **Language**: Python

8

- **Installation**: `pip install google-cloud-aiplatform`

9

10

## Core Imports

11

12

For traditional Vertex AI resource management:

13

14

```python

15

import google.cloud.aiplatform as aiplatform

16

17

# Initialize the SDK

18

aiplatform.init(project='your-project-id', location='us-central1')

19

```

20

21

For modern generative AI functionality:

22

23

```python

24

import vertexai

25

from vertexai.generative_models import GenerativeModel

26

from vertexai.language_models import TextGenerationModel

27

from vertexai.vision_models import ImageGenerationModel

28

29

# Initialize Vertex AI

30

vertexai.init(project='your-project-id', location='us-central1')

31

```

32

33

## Basic Usage

34

35

### Traditional Vertex AI SDK

36

37

```python

38

import google.cloud.aiplatform as aiplatform

39

40

# Initialize

41

aiplatform.init(project='my-project', location='us-central1')

42

43

# Create a tabular dataset

44

dataset = aiplatform.TabularDataset.create(

45

display_name="my-dataset",

46

gcs_source="gs://my-bucket/dataset.csv"

47

)

48

49

# Train an AutoML model

50

job = aiplatform.AutoMLTabularTrainingJob(

51

display_name="my-training-job",

52

optimization_prediction_type="classification"

53

)

54

55

model = job.run(

56

dataset=dataset,

57

target_column="label"

58

)

59

60

# Deploy for predictions

61

endpoint = model.deploy(

62

deployed_model_display_name="my-model",

63

machine_type="n1-standard-4"

64

)

65

66

# Make predictions

67

predictions = endpoint.predict([[1.0, 2.0, 3.0]])

68

```

69

70

### Generative AI SDK

71

72

```python

73

import vertexai

74

from vertexai.generative_models import GenerativeModel

75

76

# Initialize

77

vertexai.init(project='my-project', location='us-central1')

78

79

# Use Gemini model

80

model = GenerativeModel('gemini-1.5-pro')

81

response = model.generate_content('Explain quantum computing')

82

print(response.text)

83

84

# Chat conversation

85

chat = model.start_chat()

86

response = chat.send_message('Hello!')

87

print(response.text)

88

```

89

90

## Architecture

91

92

The library is organized into two main APIs that serve different use cases:

93

94

### Traditional Vertex AI SDK (`google.cloud.aiplatform`)

95

96

Resource-based API following Google Cloud patterns:

97

- **Resources**: Models, Endpoints, Datasets, Jobs represent cloud resources

98

- **Lifecycle Management**: Create, update, delete, and monitor resources

99

- **Enterprise Features**: IAM, VPC, monitoring, batch processing

100

- **MLOps Integration**: Pipelines, experiments, feature stores, model registry

101

102

### Generative AI SDK (`vertexai`)

103

104

Modern, streamlined API for AI generation:

105

- **Model-Centric**: Direct interaction with AI models

106

- **Simplified Usage**: Minimal configuration for common tasks

107

- **Multimodal Support**: Text, images, video, and audio processing

108

- **Advanced Features**: Function calling, grounding, safety filtering

109

110

This dual-API design allows developers to choose the right abstraction level for their needs while maintaining compatibility between both approaches.

111

112

## Capabilities

113

114

### Dataset Management

115

116

Comprehensive dataset creation, management, and preparation for various ML tasks including tabular, image, text, video, and time series data.

117

118

```python { .api }

119

class TabularDataset:

120

def create(cls, display_name: str, gcs_source: Union[str, Sequence[str]], **kwargs) -> 'TabularDataset': ...

121

def import_data(self, gcs_source: Union[str, Sequence[str]], **kwargs) -> None: ...

122

123

class ImageDataset:

124

def create(cls, display_name: str, gcs_source: str, import_schema_uri: str, **kwargs) -> 'ImageDataset': ...

125

126

class TextDataset:

127

def create(cls, display_name: str, gcs_source: Union[str, Sequence[str]], **kwargs) -> 'TextDataset': ...

128

```

129

130

[Dataset Management](./datasets.md)

131

132

### Model Training

133

134

AutoML and custom training capabilities for various ML tasks with comprehensive job management and monitoring.

135

136

```python { .api }

137

class AutoMLTabularTrainingJob:

138

def __init__(self, display_name: str, optimization_prediction_type: str, **kwargs): ...

139

def run(self, dataset: TabularDataset, target_column: str, **kwargs) -> Model: ...

140

141

class CustomTrainingJob:

142

def __init__(self, display_name: str, script_path: str, container_uri: str, **kwargs): ...

143

def run(self, dataset: Optional[Dataset] = None, **kwargs) -> Model: ...

144

```

145

146

[Model Training](./training.md)

147

148

### Model Management and Deployment

149

150

Model versioning, deployment, and serving with comprehensive endpoint management and resource optimization.

151

152

```python { .api }

153

class Model:

154

def deploy(self, endpoint: Optional[Endpoint] = None, deployed_model_display_name: str = None, **kwargs) -> Endpoint: ...

155

def upload(cls, display_name: str, artifact_uri: str, serving_container_image_uri: str, **kwargs) -> 'Model': ...

156

157

class Endpoint:

158

def create(cls, display_name: str, **kwargs) -> 'Endpoint': ...

159

def predict(self, instances: List[Dict], **kwargs) -> Prediction: ...

160

```

161

162

[Model Management](./models.md)

163

164

### Generative AI Models

165

166

Modern generative AI capabilities including text generation, chat, multimodal interactions, and function calling.

167

168

```python { .api }

169

class GenerativeModel:

170

def __init__(self, model_name: str, generation_config: Optional[GenerationConfig] = None, **kwargs): ...

171

def generate_content(self, contents: ContentsType, stream: bool = False, **kwargs) -> GenerationResponse: ...

172

def start_chat(self, history: Optional[List[Content]] = None, **kwargs) -> ChatSession: ...

173

174

class TextGenerationModel:

175

def from_pretrained(cls, model_name: str) -> 'TextGenerationModel': ...

176

def predict(self, prompt: str, **kwargs) -> TextGenerationResponse: ...

177

```

178

179

[Generative AI](./generative-ai.md)

180

181

### Computer Vision

182

183

Comprehensive vision AI capabilities including image generation, analysis, and multimodal understanding.

184

185

```python { .api }

186

class ImageGenerationModel:

187

def from_pretrained(cls, model_name: str) -> 'ImageGenerationModel': ...

188

def generate_images(self, prompt: str, number_of_images: int = 1, **kwargs) -> ImageGenerationResponse: ...

189

190

class ImageCaptioningModel:

191

def get_captions(self, image: Image, number_of_results: int = 1, **kwargs) -> List[str]: ...

192

```

193

194

[Computer Vision](./vision.md)

195

196

### ML Pipelines

197

198

Workflow orchestration, scheduling, and complex ML pipeline management with Kubeflow Pipelines integration.

199

200

```python { .api }

201

class PipelineJob:

202

def create(cls, display_name: str, template_path: str, **kwargs) -> 'PipelineJob': ...

203

def run(self, service_account: Optional[str] = None, **kwargs) -> None: ...

204

205

class PipelineJobSchedule:

206

def create(cls, pipeline_job: PipelineJob, display_name: str, cron: str, **kwargs) -> 'PipelineJobSchedule': ...

207

```

208

209

[ML Pipelines](./pipelines.md)

210

211

### Feature Store

212

213

Enterprise feature management with online and offline serving, feature versioning, and monitoring.

214

215

```python { .api }

216

class Featurestore:

217

def create(cls, featurestore_id: str, **kwargs) -> 'Featurestore': ...

218

def create_entity_type(self, entity_type_id: str, **kwargs) -> EntityType: ...

219

220

class Feature:

221

def create(cls, feature_id: str, value_type: str, entity_type: EntityType, **kwargs) -> 'Feature': ...

222

```

223

224

[Feature Store](./feature-store.md)

225

226

### Experiment Tracking

227

228

Comprehensive experiment management, metrics logging, and artifact tracking with integration to popular ML frameworks.

229

230

```python { .api }

231

def init(project: str, location: str, **kwargs) -> None: ...

232

def start_run(run: str, resume: bool = False, **kwargs) -> None: ...

233

def log_params(params: Dict[str, Union[str, int, float]]) -> None: ...

234

def log_metrics(metrics: Dict[str, Union[int, float]]) -> None: ...

235

def log_model(model, artifact_id: Optional[str] = None, **kwargs) -> None: ...

236

237

class Experiment:

238

def create(cls, experiment_id: str, **kwargs) -> 'Experiment': ...

239

```

240

241

[Experiment Tracking](./experiments.md)

242

243

### Vector Search

244

245

High-performance vector similarity search with approximate nearest neighbor capabilities for embedding-based applications.

246

247

```python { .api }

248

class MatchingEngineIndex:

249

def create(cls, display_name: str, contents_delta_uri: str, **kwargs) -> 'MatchingEngineIndex': ...

250

def update_embeddings(self, contents_delta_uri: str, **kwargs) -> None: ...

251

252

class MatchingEngineIndexEndpoint:

253

def create(cls, display_name: str, public_endpoint_enabled: bool = False, **kwargs) -> 'MatchingEngineIndexEndpoint': ...

254

def match(self, deployed_index_id: str, queries: List[List[float]], **kwargs) -> List[List[MatchNeighbor]]: ...

255

```

256

257

[Vector Search](./vector-search.md)

258

259

### Batch Processing

260

261

Large-scale batch inference and data processing with distributed computing integration and resource optimization.

262

263

```python { .api }

264

class BatchPredictionJob:

265

def create(cls, job_display_name: str, model_name: str, instances_format: str, **kwargs) -> 'BatchPredictionJob': ...

266

def create_from_job_spec(cls, job_spec: Dict, **kwargs) -> 'BatchPredictionJob': ...

267

```

268

269

[Batch Processing](./batch.md)

270

271

## Types

272

273

```python { .api }

274

# Common types used across the API

275

276

# Resource management

277

class Prediction:

278

predictions: List[Dict]

279

deployed_model_id: str

280

model_version_id: str

281

model_resource_name: str

282

explanations: Optional[List[Explanation]]

283

284

# Generative AI types

285

ContentsType = Union[

286

str,

287

Image,

288

Part,

289

List[Union[str, Image, Part]],

290

List[Content]

291

]

292

293

GenerationConfigType = Union[GenerationConfig, Dict[str, Any]]

294

SafetySettingsType = Union[SafetySetting, List[SafetySetting], Dict[str, Any]]

295

296

# Training and evaluation

297

class TrainingJob:

298

resource_name: str

299

display_name: str

300

state: JobState

301

create_time: datetime

302

start_time: Optional[datetime]

303

end_time: Optional[datetime]

304

error: Optional[Status]

305

306

# Enums

307

class JobState(Enum):

308

JOB_STATE_UNSPECIFIED = 0

309

JOB_STATE_QUEUED = 1

310

JOB_STATE_PENDING = 2

311

JOB_STATE_RUNNING = 3

312

JOB_STATE_SUCCEEDED = 4

313

JOB_STATE_FAILED = 5

314

JOB_STATE_CANCELLING = 6

315

JOB_STATE_CANCELLED = 7

316

JOB_STATE_PAUSED = 8

317

JOB_STATE_EXPIRED = 9

318

```