or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

audio.mdbatches.mdchat-completions.mdembeddings.mdfiles.mdindex.mdmodels.md

embeddings.mddocs/

0

# Text Embeddings

1

2

Generate high-quality vector embeddings for text inputs, supporting both single strings and batch processing. The embeddings API converts text into dense vector representations that can be used for semantic search, clustering, and other machine learning tasks.

3

4

## Capabilities

5

6

### Create Embeddings

7

8

Generate embeddings for single text strings or batch process multiple texts simultaneously.

9

10

```python { .api }

11

def create(

12

input: Union[str, List[str]],

13

model: Union[str, Literal["nomic-embed-text-v1_5"]],

14

encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,

15

user: Optional[str] | NotGiven = NOT_GIVEN,

16

extra_headers: Headers | None = None,

17

extra_query: Query | None = None,

18

extra_body: Body | None = None,

19

timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN

20

) -> CreateEmbeddingResponse:

21

"""

22

Create embeddings for the given input text(s).

23

24

Parameters:

25

- input: Text string or list of text strings to embed

26

- model: Model identifier to use for embeddings

27

- encoding_format: Format for the embedding vectors ("float" or "base64")

28

- user: Unique identifier representing your end-user

29

30

Returns:

31

CreateEmbeddingResponse containing embedding vectors and usage information

32

"""

33

```

34

35

### Async Create Embeddings

36

37

Asynchronous version of embedding creation with identical parameters and functionality.

38

39

```python { .api }

40

async def create(

41

input: Union[str, List[str]],

42

model: Union[str, Literal["nomic-embed-text-v1_5"]],

43

encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,

44

user: Optional[str] | NotGiven = NOT_GIVEN,

45

**kwargs

46

) -> CreateEmbeddingResponse:

47

"""Async version of create() with identical parameters."""

48

```

49

50

## Usage Examples

51

52

### Single Text Embedding

53

54

```python

55

from groq import Groq

56

57

client = Groq()

58

59

response = client.embeddings.create(

60

input="The quick brown fox jumps over the lazy dog",

61

model="nomic-embed-text-v1_5"

62

)

63

64

embedding = response.data[0].embedding

65

print(f"Embedding dimension: {len(embedding)}")

66

print(f"First few values: {embedding[:5]}")

67

```

68

69

### Batch Text Embeddings

70

71

```python

72

from groq import Groq

73

74

client = Groq()

75

76

texts = [

77

"Machine learning is a subset of artificial intelligence.",

78

"Deep learning uses neural networks with multiple layers.",

79

"Natural language processing helps computers understand text.",

80

"Computer vision enables machines to interpret visual information."

81

]

82

83

response = client.embeddings.create(

84

input=texts,

85

model="nomic-embed-text-v1_5"

86

)

87

88

for i, embedding_obj in enumerate(response.data):

89

print(f"Text {i+1} embedding dimension: {len(embedding_obj.embedding)}")

90

```

91

92

### Async Usage

93

94

```python

95

import asyncio

96

from groq import AsyncGroq

97

98

async def main():

99

client = AsyncGroq()

100

101

response = await client.embeddings.create(

102

input="Async embedding generation example",

103

model="nomic-embed-text-v1_5"

104

)

105

106

embedding = response.data[0].embedding

107

print(f"Generated embedding with {len(embedding)} dimensions")

108

109

asyncio.run(main())

110

```

111

112

### Semantic Search Example

113

114

```python

115

import numpy as np

116

from groq import Groq

117

118

client = Groq()

119

120

# Documents to search through

121

documents = [

122

"Python is a high-level programming language.",

123

"JavaScript is used for web development.",

124

"Machine learning algorithms can predict outcomes.",

125

"Databases store and organize information.",

126

"APIs enable communication between applications."

127

]

128

129

# Query to search for

130

query = "programming languages for software development"

131

132

# Generate embeddings for all documents and query

133

all_texts = documents + [query]

134

response = client.embeddings.create(

135

input=all_texts,

136

model="nomic-embed-text-v1_5"

137

)

138

139

# Extract embeddings

140

doc_embeddings = [resp.embedding for resp in response.data[:-1]]

141

query_embedding = response.data[-1].embedding

142

143

# Calculate cosine similarity

144

def cosine_similarity(a, b):

145

return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))

146

147

# Find most similar document

148

similarities = [cosine_similarity(query_embedding, doc_emb) for doc_emb in doc_embeddings]

149

best_match_idx = np.argmax(similarities)

150

151

print(f"Query: {query}")

152

print(f"Most similar document: {documents[best_match_idx]}")

153

print(f"Similarity score: {similarities[best_match_idx]:.4f}")

154

```

155

156

## Types

157

158

### Request Types

159

160

```python { .api }

161

class EmbeddingCreateParams:

162

input: Union[str, List[str]]

163

model: Union[str, Literal["nomic-embed-text-v1_5"]]

164

encoding_format: Literal["float", "base64"] | NotGiven

165

user: Optional[str] | NotGiven

166

```

167

168

### Response Types

169

170

```python { .api }

171

class CreateEmbeddingResponse:

172

data: List[Embedding]

173

model: str

174

object: Literal["list"]

175

usage: EmbeddingUsage

176

177

class Embedding:

178

embedding: List[float]

179

index: int

180

object: Literal["embedding"]

181

182

class EmbeddingUsage:

183

prompt_tokens: int

184

total_tokens: int

185

```