tessl install tessl/pypi-influxdb-client@1.49.0Comprehensive Python client library for InfluxDB 2.x with sync/async APIs for writing, querying, and managing time series data.
Agent Success
Agent success rate when using this tile
82%
Improvement
Agent success rate improvement when using this tile compared to baseline
1.19x
Baseline
Agent success rate without this tile
69%
{
"context": "This evaluation assesses how effectively the engineer uses influxdb-client-python's DataFrame write capabilities to ingest sensor data. The focus is on utilizing the library's optimized DataFrame serialization features rather than implementing manual row-by-row conversion.",
"type": "weighted_checklist",
"checklist": [
{
"name": "Uses pandas.read_csv",
"description": "Uses pandas.read_csv() or equivalent pandas method to read the CSV file into a DataFrame",
"max_score": 10
},
{
"name": "Proper datetime conversion",
"description": "Converts the timestamp column to pandas datetime objects using pd.to_datetime() or parse_dates parameter in read_csv()",
"max_score": 15
},
{
"name": "Gets write API",
"description": "Obtains a write API instance from the InfluxDB client using client.write_api() with appropriate write options",
"max_score": 15
},
{
"name": "DataFrame write method",
"description": "Uses write_api.write() method with the DataFrame directly as the record parameter, leveraging the optimized DataFrame serialization",
"max_score": 25
},
{
"name": "Measurement name parameter",
"description": "Specifies the measurement name using the data_frame_measurement_name parameter in the write() call",
"max_score": 10
},
{
"name": "Tag columns parameter",
"description": "Specifies tag columns (sensor_id and location) using the data_frame_tag_columns parameter to correctly map columns to tags",
"max_score": 15
},
{
"name": "Timestamp column handling",
"description": "Properly handles the timestamp column by ensuring it's set as the DataFrame index or using data_frame_timestamp_column parameter",
"max_score": 10
}
]
}