0
# 3D Morphable Face Models
1
2
Advanced 3D face modeling capabilities using morphable models for face reconstruction, pose estimation, expression analysis, and realistic 3D face rendering. Built on the Basel Face Model (BFM) and other morphable model formats.
3
4
## Capabilities
5
6
### MorphabelModel Class
7
8
Core 3D morphable face model for generating and manipulating 3D face geometry, texture, and expressions.
9
10
```python { .api }
11
class MorphabelModel:
12
def __init__(self, model_path, model_type='BFM'):
13
"""
14
Initialize 3D morphable face model.
15
16
Parameters:
17
- model_path: str, path to morphable model file (.mat, .pkl, etc.)
18
- model_type: str, model type ('BFM', '3DMM', etc.)
19
"""
20
21
def get_shape_para(self, type='random') -> np.ndarray:
22
"""
23
Generate or retrieve shape parameters.
24
25
Parameters:
26
- type: str, parameter generation type ('random', 'zero', 'mean')
27
28
Returns:
29
np.ndarray: shape parameters vector
30
"""
31
32
def get_exp_para(self, type='random') -> np.ndarray:
33
"""
34
Generate or retrieve expression parameters.
35
36
Parameters:
37
- type: str, parameter generation type ('random', 'zero', 'mean')
38
39
Returns:
40
np.ndarray: expression parameters vector
41
"""
42
43
def generate_vertices(self, shape_para, exp_para) -> np.ndarray:
44
"""
45
Generate 3D face vertices from shape and expression parameters.
46
47
Parameters:
48
- shape_para: np.ndarray, shape parameters
49
- exp_para: np.ndarray, expression parameters
50
51
Returns:
52
np.ndarray: 3D vertices, shape (n_vertices, 3)
53
"""
54
55
def get_tex_para(self, type='random') -> np.ndarray:
56
"""
57
Generate or retrieve texture parameters.
58
59
Parameters:
60
- type: str, parameter generation type
61
62
Returns:
63
np.ndarray: texture parameters vector
64
"""
65
66
def generate_colors(self, tex_para) -> np.ndarray:
67
"""
68
Generate face colors/textures from texture parameters.
69
70
Parameters:
71
- tex_para: np.ndarray, texture parameters
72
73
Returns:
74
np.ndarray: vertex colors, shape (n_vertices, 3)
75
"""
76
77
def rotate(self, vertices, angles) -> np.ndarray:
78
"""
79
Rotate 3D face vertices.
80
81
Parameters:
82
- vertices: np.ndarray, 3D vertices to rotate
83
- angles: np.ndarray, rotation angles [pitch, yaw, roll] in radians
84
85
Returns:
86
np.ndarray: rotated vertices
87
"""
88
89
def transform(self, vertices, s, angles, t3d) -> np.ndarray:
90
"""
91
Apply full 3D transformation to vertices.
92
93
Parameters:
94
- vertices: np.ndarray, input vertices
95
- s: float, scaling factor
96
- angles: np.ndarray, rotation angles [pitch, yaw, roll]
97
- t3d: np.ndarray, 3D translation vector
98
99
Returns:
100
np.ndarray: transformed vertices
101
"""
102
103
def transform_3ddfa(self, vertices, s, angles, t3d) -> np.ndarray:
104
"""
105
Apply 3DDFA-style transformation to vertices.
106
107
Parameters: same as transform()
108
109
Returns:
110
np.ndarray: transformed vertices using 3DDFA convention
111
"""
112
113
def fit(self, x, X_ind, max_iter=4, isShow=False) -> Tuple[np.ndarray, ...]:
114
"""
115
Fit morphable model to 2D/3D landmarks.
116
117
Parameters:
118
- x: np.ndarray, target landmark coordinates
119
- X_ind: np.ndarray, indices of model vertices corresponding to landmarks
120
- max_iter: int, maximum fitting iterations
121
- isShow: bool, show fitting progress visualization
122
123
Returns:
124
tuple: (fitted_vertices, shape_params, exp_params, pose_params, ...)
125
"""
126
```
127
128
### Model Attributes
129
130
Key attributes of the morphable model providing model metadata and mesh information.
131
132
```python { .api }
133
# Model dimensions and parameters
134
nver: float # Number of vertices in the model
135
ntri: float # Number of triangles in the mesh
136
n_shape_para: int # Number of shape parameters (typically 199)
137
n_exp_para: int # Number of expression parameters (typically 29)
138
n_tex_para: int # Number of texture parameters (typically 199)
139
140
# Mesh topology
141
kpt_ind: np.ndarray # Indices of keypoint vertices
142
triangles: np.ndarray # Triangle mesh connectivity
143
full_triangles: np.ndarray # Complete triangle mesh for rendering
144
```
145
146
### 3D Mesh Processing Modules
147
148
Comprehensive 3D mesh processing capabilities for visualization and manipulation.
149
150
```python { .api }
151
# Mesh I/O operations
152
def read_obj(filename) -> Tuple[np.ndarray, np.ndarray]: ...
153
def write_obj(filename, vertices, triangles): ...
154
155
# Mesh visualization
156
def render_mesh(vertices, triangles, colors=None) -> np.ndarray: ...
157
def plot_mesh(vertices, triangles): ...
158
159
# 3D transformations
160
def apply_transform(vertices, transform_matrix) -> np.ndarray: ...
161
def compute_normal(vertices, triangles) -> np.ndarray: ...
162
163
# Lighting calculations
164
def phong_shading(vertices, normals, light_pos, light_color) -> np.ndarray: ...
165
def lambert_shading(vertices, normals, light_dir) -> np.ndarray: ...
166
```
167
168
## Usage Examples
169
170
### Basic 3D Face Generation
171
172
```python
173
from insightface.thirdparty.face3d.morphable_model import MorphabelModel
174
import numpy as np
175
176
# Load morphable model (requires BFM model file)
177
model_path = 'path/to/BFM.mat' # Basel Face Model file
178
bfm = MorphabelModel(model_path, model_type='BFM')
179
180
print(f"Model info:")
181
print(f" Vertices: {int(bfm.nver)}")
182
print(f" Triangles: {int(bfm.ntri)}")
183
print(f" Shape parameters: {bfm.n_shape_para}")
184
print(f" Expression parameters: {bfm.n_exp_para}")
185
186
# Generate random face
187
shape_params = bfm.get_shape_para('random')
188
exp_params = bfm.get_exp_para('zero') # Neutral expression
189
190
# Generate 3D face vertices
191
vertices = bfm.generate_vertices(shape_params, exp_params)
192
print(f"Generated vertices shape: {vertices.shape}")
193
194
# Generate face colors/texture
195
tex_params = bfm.get_tex_para('random')
196
colors = bfm.generate_colors(tex_params)
197
print(f"Generated colors shape: {colors.shape}")
198
```
199
200
### 3D Face Pose Manipulation
201
202
```python
203
import numpy as np
204
205
# Start with a neutral face
206
shape_params = bfm.get_shape_para('mean') # Average face shape
207
exp_params = bfm.get_exp_para('zero') # Neutral expression
208
vertices = bfm.generate_vertices(shape_params, exp_params)
209
210
# Apply different poses
211
poses = [
212
{'name': 'frontal', 'angles': [0, 0, 0]},
213
{'name': 'left_profile', 'angles': [0, np.pi/3, 0]},
214
{'name': 'right_profile', 'angles': [0, -np.pi/3, 0]},
215
{'name': 'looking_up', 'angles': [np.pi/6, 0, 0]},
216
{'name': 'looking_down', 'angles': [-np.pi/6, 0, 0]}
217
]
218
219
posed_faces = {}
220
for pose in poses:
221
# Apply rotation
222
rotated = bfm.rotate(vertices, pose['angles'])
223
224
# Apply full transformation with scaling and translation
225
s = 1.0 # No scaling
226
t3d = np.array([0, 0, 0]) # No translation
227
transformed = bfm.transform(rotated, s, pose['angles'], t3d)
228
229
posed_faces[pose['name']] = transformed
230
231
print(f"Generated {len(posed_faces)} different poses")
232
```
233
234
### 3D Model Fitting to Landmarks
235
236
```python
237
# Fit model to detected facial landmarks
238
from insightface.app import FaceAnalysis
239
import cv2
240
241
# Setup face analysis for landmark detection
242
app = FaceAnalysis()
243
app.prepare(ctx_id=0)
244
245
# Load image and detect landmarks
246
img = cv2.imread('face_image.jpg')
247
faces = app.get(img)
248
249
if faces:
250
face = faces[0]
251
252
# Use 3D landmarks if available
253
if hasattr(face, 'landmark_3d_68') and face.landmark_3d_68 is not None:
254
target_landmarks = face.landmark_3d_68
255
256
# Define corresponding model vertex indices
257
# (This would typically be predefined based on the model)
258
landmark_indices = np.array([
259
# Indices of BFM vertices that correspond to facial landmarks
260
# These need to be established based on the specific model
261
8163, 8174, 8213, 8194, 8227, # Chin area
262
2435, 2452, 2463, 2441, 2456, # Left eyebrow
263
# ... more landmark correspondences
264
])
265
266
# Fit model to landmarks
267
fitted_results = bfm.fit(
268
x=target_landmarks,
269
X_ind=landmark_indices,
270
max_iter=10,
271
isShow=False
272
)
273
274
fitted_vertices, fitted_shape, fitted_exp, fitted_pose = fitted_results[:4]
275
276
print(f"Fitting completed:")
277
print(f" Shape parameters: {fitted_shape.shape}")
278
print(f" Expression parameters: {fitted_exp.shape}")
279
print(f" Pose parameters: {fitted_pose.shape}")
280
```
281
282
### Expression Manipulation
283
284
```python
285
# Create faces with different expressions
286
base_shape = bfm.get_shape_para('mean')
287
288
# Define expression variations
289
expressions = {
290
'neutral': bfm.get_exp_para('zero'),
291
'smile': bfm.get_exp_para('random') * 0.5, # Scaled random expression
292
'surprise': np.zeros(bfm.n_exp_para),
293
'frown': np.zeros(bfm.n_exp_para)
294
}
295
296
# Manually adjust specific expression parameters if known
297
# (These indices depend on the specific morphable model)
298
expressions['smile'][12] = 2.0 # Smile-related parameter
299
expressions['surprise'][5] = 1.5 # Eyebrow raise
300
expressions['frown'][15] = -1.0 # Mouth corner down
301
302
expression_faces = {}
303
for exp_name, exp_params in expressions.items():
304
vertices = bfm.generate_vertices(base_shape, exp_params)
305
expression_faces[exp_name] = vertices
306
307
print(f"Generated {len(expression_faces)} expression variations")
308
```
309
310
### 3D Face Rendering Pipeline
311
312
```python
313
from insightface.thirdparty.face3d.mesh import render, light
314
315
def render_3d_face(vertices, triangles, colors, pose_angles, image_size=(256, 256)):
316
"""Complete 3D face rendering pipeline."""
317
318
# Apply pose transformation
319
transformed_vertices = bfm.rotate(vertices, pose_angles)
320
321
# Set up lighting
322
light_positions = np.array([
323
[0, 0, 1], # Front light
324
[-1, 1, 1], # Left-top light
325
[1, 1, 1] # Right-top light
326
])
327
328
light_intensities = np.array([0.6, 0.3, 0.3])
329
330
# Compute normals for lighting
331
from insightface.thirdparty.face3d.mesh.transform import compute_normal
332
normals = compute_normal(transformed_vertices, triangles)
333
334
# Apply lighting
335
lit_colors = colors.copy()
336
for light_pos, intensity in zip(light_positions, light_intensities):
337
lighting = light.lambert_shading(normals, light_pos) * intensity
338
lit_colors = lit_colors * lighting[:, np.newaxis]
339
340
# Render to image
341
rendered_image = render.render_mesh(
342
transformed_vertices,
343
triangles,
344
lit_colors,
345
image_size
346
)
347
348
return rendered_image
349
350
# Render faces with different poses and lighting
351
shape_params = bfm.get_shape_para('mean')
352
exp_params = bfm.get_exp_para('zero')
353
tex_params = bfm.get_tex_para('mean')
354
355
vertices = bfm.generate_vertices(shape_params, exp_params)
356
colors = bfm.generate_colors(tex_params)
357
358
# Render with different poses
359
for angle in [0, np.pi/6, np.pi/3]:
360
pose = [0, angle, 0] # Yaw rotation
361
rendered = render_3d_face(vertices, bfm.triangles, colors, pose)
362
363
# Save rendered image
364
cv2.imwrite(f'rendered_face_yaw_{int(np.degrees(angle))}.jpg', rendered)
365
```
366
367
### Face Morphing and Interpolation
368
369
```python
370
# Create morphing between two faces
371
def morph_faces(shape1, exp1, shape2, exp2, n_steps=10):
372
"""Create smooth morphing between two face configurations."""
373
morphed_faces = []
374
375
for i in range(n_steps):
376
alpha = i / (n_steps - 1) # Interpolation weight
377
378
# Linear interpolation of parameters
379
morphed_shape = (1 - alpha) * shape1 + alpha * shape2
380
morphed_exp = (1 - alpha) * exp1 + alpha * exp2
381
382
# Generate intermediate face
383
vertices = bfm.generate_vertices(morphed_shape, morphed_exp)
384
morphed_faces.append(vertices)
385
386
return morphed_faces
387
388
# Create two different faces
389
face1_shape = bfm.get_shape_para('random')
390
face1_exp = bfm.get_exp_para('zero')
391
392
face2_shape = bfm.get_shape_para('random')
393
face2_exp = bfm.get_exp_para('random')
394
395
# Generate morphing sequence
396
morph_sequence = morph_faces(face1_shape, face1_exp, face2_shape, face2_exp)
397
398
print(f"Generated morphing sequence with {len(morph_sequence)} frames")
399
400
# Save morphing frames
401
for i, vertices in enumerate(morph_sequence):
402
# Render each frame (using rendering function from above)
403
colors = bfm.generate_colors(bfm.get_tex_para('mean'))
404
rendered = render_3d_face(vertices, bfm.triangles, colors, [0, 0, 0])
405
cv2.imwrite(f'morph_frame_{i:03d}.jpg', rendered)
406
```
407
408
### Advanced Model Analysis
409
410
```python
411
def analyze_morphable_model(bfm):
412
"""Analyze morphable model properties and statistics."""
413
414
print("=== Morphable Model Analysis ===")
415
416
print(f"Model Dimensions:")
417
print(f" Vertices: {int(bfm.nver)}")
418
print(f" Triangles: {int(bfm.ntri)}")
419
print(f" Keypoints: {len(bfm.kpt_ind)}")
420
421
print(f"\nParameter Dimensions:")
422
print(f" Shape: {bfm.n_shape_para}")
423
print(f" Expression: {bfm.n_exp_para}")
424
print(f" Texture: {bfm.n_tex_para}")
425
426
# Analyze parameter ranges
427
test_shapes = [bfm.get_shape_para('random') for _ in range(100)]
428
shape_stats = np.array(test_shapes)
429
430
print(f"\nShape Parameter Statistics:")
431
print(f" Mean range: [{shape_stats.mean(axis=0).min():.3f}, {shape_stats.mean(axis=0).max():.3f}]")
432
print(f" Std range: [{shape_stats.std(axis=0).min():.3f}, {shape_stats.std(axis=0).max():.3f}]")
433
434
# Analyze mesh properties
435
mean_shape = bfm.get_shape_para('mean')
436
mean_exp = bfm.get_exp_para('zero')
437
mean_vertices = bfm.generate_vertices(mean_shape, mean_exp)
438
439
print(f"\nMesh Properties:")
440
print(f" Vertex bounds: X[{mean_vertices[:, 0].min():.2f}, {mean_vertices[:, 0].max():.2f}]")
441
print(f" Y[{mean_vertices[:, 1].min():.2f}, {mean_vertices[:, 1].max():.2f}]")
442
print(f" Z[{mean_vertices[:, 2].min():.2f}, {mean_vertices[:, 2].max():.2f}]")
443
444
# Run analysis
445
analyze_morphable_model(bfm)
446
```