tessl install tessl/pypi-kedro@1.1.0Kedro helps you build production-ready data and analytics pipelines
Agent Success
Agent success rate when using this tile
98%
Improvement
Agent success rate improvement when using this tile compared to baseline
1.32x
Baseline
Agent success rate without this tile
74%
Constants and enumerations used throughout Kedro.
From kedro.utils and kedro.io.core:
HTTP_PROTOCOLS: tuple[str, ...] = ("http", "https")
CLOUD_PROTOCOLS: tuple[str, ...] = (
"abfs", # Azure Blob File System
"abfss", # Azure Blob File System (secure)
"adl", # Azure Data Lake
"gcs", # Google Cloud Storage
"gdrive", # Google Drive
"gs", # Google Storage
"oci", # Oracle Cloud Infrastructure
"oss", # Alibaba Cloud OSS
"s3", # AWS S3
"s3a", # AWS S3 (Hadoop)
"s3n", # AWS S3 (legacy Hadoop)
)
PROTOCOL_DELIMITER: str = "://"VERSION_FORMAT: str = "%Y-%m-%dT%H.%M.%S.%fZ" # Timestamp format
VERSIONED_FLAG_KEY: str = "versioned" # Key in config to enable versioning
VERSION_KEY: str = "version" # Key for version specificationTYPE_KEY: str = "type" # Key in dataset config to specify dataset class
CREDENTIALS_KEY: str = "credentials" # Key in dataset config for credentials referenceFrom kedro.pipeline.transcoding:
TRANSCODING_SEPARATOR: str = "@"The separator used in dataset names to specify transcoding formats. When a dataset name contains the transcoding separator, the part after the separator specifies the format to transcode to.
Example usage:
# Use the same underlying data with different formats
node(load_data, "raw_data@pandas", "processed_data") # Load as pandas DataFrame
node(spark_transform, "raw_data@spark", "spark_output") # Load as Spark DataFrameFrom kedro.io.catalog_config_resolver:
DEFAULT_RUNTIME_PATTERN: dict[str, dict[str, Any]] = {
"{default}": {"type": "kedro.io.MemoryDataset"}
}The default runtime pattern used by CatalogConfigResolver when no custom runtime patterns are provided. This pattern matches any dataset name not explicitly defined in the catalog and creates a MemoryDataset for it.
From kedro.config:
MERGING_IMPLEMENTATIONS: dict[MergeStrategies, str] = {
MergeStrategies.SOFT: "_soft_merge",
MergeStrategies.DESTRUCTIVE: "_destructive_merge"
}Internal mapping of MergeStrategies enum values to their corresponding merge method names in OmegaConfigLoader. This is used to dispatch to the appropriate merge strategy implementation.
__version__: str # Package version "1.1.1"