0
# Precision Control and Optimization
1
2
Precision plugins for mixed precision training, quantization, and various floating-point formats to optimize memory usage and training speed while maintaining model quality.
3
4
## Capabilities
5
6
### Mixed Precision Training
7
8
Automatic mixed precision training using 16-bit floats for forward pass and 32-bit for loss computation.
9
10
```python { .api }
11
class MixedPrecision:
12
def __init__(self, precision: str = "16-mixed", device: str = "cuda"):
13
"""
14
Initialize mixed precision plugin.
15
16
Args:
17
precision: Precision mode ('16-mixed', 'bf16-mixed')
18
device: Target device
19
"""
20
```
21
22
### Half Precision
23
24
16-bit floating point training for memory efficiency.
25
26
```python { .api }
27
class HalfPrecision:
28
def __init__(self):
29
"""Initialize half precision plugin."""
30
```
31
32
### Double Precision
33
34
64-bit floating point training for maximum numerical precision.
35
36
```python { .api }
37
class DoublePrecision:
38
def __init__(self):
39
"""Initialize double precision plugin."""
40
```
41
42
### Quantization
43
44
8-bit and 4-bit quantization using BitsAndBytes for memory-efficient training of large models.
45
46
```python { .api }
47
class BitsandbytesPrecision:
48
def __init__(
49
self,
50
mode: str = "int8",
51
dtype: Optional[torch.dtype] = None,
52
ignore_modules: Optional[Set[str]] = None
53
):
54
"""
55
Initialize BitsAndBytes precision plugin.
56
57
Args:
58
mode: Quantization mode ('int8', 'int4', 'nf4', 'fp4')
59
dtype: Data type for computation
60
ignore_modules: Modules to skip quantization
61
"""
62
```
63
64
### DeepSpeed Precision
65
66
Precision plugin for DeepSpeed optimization with ZeRO memory optimization.
67
68
```python { .api }
69
class DeepSpeedPrecision:
70
def __init__(self):
71
"""Initialize DeepSpeed precision plugin."""
72
```
73
74
### FSDP Precision
75
76
Precision plugin optimized for Fully Sharded Data Parallel training.
77
78
```python { .api }
79
class FSDPPrecision:
80
def __init__(self):
81
"""Initialize FSDP precision plugin."""
82
```
83
84
### Transformer Engine Precision
85
86
NVIDIA Transformer Engine precision for optimized transformer training.
87
88
```python { .api }
89
class TransformerEnginePrecision:
90
def __init__(
91
self,
92
weights_dtype: torch.dtype = torch.float32,
93
recipe: Optional[Dict[str, Any]] = None
94
):
95
"""
96
Initialize Transformer Engine precision plugin.
97
98
Args:
99
weights_dtype: Data type for model weights
100
recipe: Transformer Engine recipe configuration
101
"""
102
```
103
104
### XLA Precision
105
106
Precision plugin for TPU training with XLA compilation.
107
108
```python { .api }
109
class XLAPrecision:
110
def __init__(self):
111
"""Initialize XLA precision plugin for TPU training."""
112
```
113
114
### Base Precision
115
116
Base class for implementing custom precision plugins.
117
118
```python { .api }
119
class Precision:
120
def __init__(self):
121
"""Initialize base precision plugin."""
122
123
def convert_module(self, module: nn.Module) -> nn.Module:
124
"""Convert module for precision."""
125
126
def convert_optimizer(self, optimizer: Optimizer) -> Optimizer:
127
"""Convert optimizer for precision."""
128
129
def backward(self, tensor: Tensor, model: nn.Module) -> None:
130
"""Perform backward pass with precision handling."""
131
```